Coming Soon!
Recent Posts
No posts yet.

The Upper Jurassic Smackover formation in northern Louisiana and surrounding states has been explored and drilled for decades, but has only recently seen the sophisticated approach needed to decipher its challenging geology.

Desktop /Portals/0/PackFlashItemImages/WebReady/smackover-revisited-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 16366

AAPG is committed to connecting promising original research with much-needed funding and is continually seeking – and finding – new ways to make that potential a reality.

Desktop /Portals/0/PackFlashItemImages/WebReady/turner-bryan-2014-11nov.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 13202

Imagine the Mediterranean Sea drying out. Imagine the late Permian, as the Earth warmed and dried, and much of life faced extinction. Now put the two together, and you have the basis of an analog examined in the presentation “The Messinian Mediterranean Crisis: A Model for the Permian Delaware Basin?” at the upcoming AAPG International Conference and Exhibition in Istanbul, Turkey.

Desktop /Portals/0/PackFlashItemImages/WebReady/john-pigott-2014-09sep.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 11799

This lecture presents a history of sea-level changes focusing on the last 100 Myr. Prior to the Oligocene (ca. 33.5 Ma), the Earth had been a warm, high CO2 Greenhouse world that was largely ice-free back to 260 Ma, though recent evidence suggests that 15-25 m sea-level changes observed may have been caused by growth and decay of small, ephemeral ice sheets. The growth and decay of a continental scale ice sheet in Antarctica caused 50-60 m variations on the 106 yr scale beginning ~33.5 million years ago (Ma).

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 11668

IODP Expedition 313 (New Jersey shallow shelf) cored a 3-hole transect across Miocene seismic clinothems (prograding sigmoidal sequences) in topset, foreset, and bottomset locations, providing an opportunity to integrate seismic, log, and core data into a sequence stratigraphic framework. Our interpretations of sequences and systems tracts are made independent of any preconceived relative sea-level curves. Rather, we use basic seismic, core, and stratigraphic principles to recognize sequence boundaries, Maximum Flooding Surface, transgressive surfaces, and facies successions within sequences.

Desktop /Portals/0/PackFlashItemImages/WebReady/sequence-stratigraphy-of-new-jersey-miocene-transect-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 11667

Over the last two decades, numerical and physical experiments have repeatedly generated insights that contradict the sequence stratigraphic model that is near-universally used to interpret ancient strata in terms of relative changes in sea-level. This presentation will re-examine Upper Cretaceous strata (Blackhawk Formation, Castlegate Sandstone, Mancos Shale) exposed in the Book Cliffs, east-central Utah, USA, which are widely used as an archtype for the sequence stratigraphy of marginal-marine and shallow-marine strata. Stratigraphic architectures in these strata are classically interpreted to reflect forcing by relative sea level, but key aspects can instead be attributed to autogenic behaviors and variations in sediment flux.

Desktop /Portals/0/PackFlashItemImages/WebReady/reinterpretation-of-sea-level-driven-stratigraphic-architectures-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 11401

Sequence stratigraphy is the study of genetically related facies within a framework of chronostratigraphically significant surfaces. Paleontologic data, integrated with seismic and well log data, are an integral part of sequence stratigraphic analysis.

Desktop /Portals/0/PackFlashItemImages/WebReady/wiki-biostratigraphy-in-sequence-stratigraphy-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 11265
Organic-carbon–rich shales of the lower Marcellus Formation were deposited at the toe and basinward of a prograding clinothem associated with a Mahantango Formation delta complex centered near Harrisburg, Pennsylvania. Distribution of these organic-carbon–rich shales was influenced by shifts in the delta complex driven by changes in rates of accommodation creation and by a topographically high carbonate bank that formed along the Findlay-Algonquin arch during deposition of the Onondaga Formation. Specifically, we interpret the Union Springs member (Shamokin Member of the Marcellus Formation) and the Onondaga Formation as comprising a single third-order depositional sequence. The Onondaga Formation was deposited in the lowstand to transgressive systems tract, and the Union Springs member was deposited in the transgressive, highstand, and falling-stage systems tract. The regional extent of parasequences, systems tracts, and the interpreted depositional sequence suggest that base-level fluctuations were primarily caused by allogenic forcing—eustasy, climate, or regional thermal uplift or subsidence—instead of basement fault reactivation as argued by previous workers. Paleowater depths in the region of Marcellus Formation black mudrock accumulation were at least 330 ft (100 m) as estimated by differences in strata thickness between the northwestern carbonate bank and basinal facies to the southeast. Geochemical analysis indicates anoxic to euxinic bottom-water conditions. These conditions were supported by a deep, stratified basin with a lack of circulation.
Desktop /Portals/0/PackFlashItemImages/WebReady/sequence-stratigrapy-and-depositional-environments-of.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 7963

"Breakthrough elegance": ExxonMobil geologists Jeff Ottmann and Kevin Bohacs shared their highly-coveted knowledge on sweet spots and producibility thresholds at a recent Geosciences Technology Workshop on Unconventional Reservoir Quality.

Desktop /Portals/0/PackFlashItemImages/WebReady/conventional-reservoirs-hold-keys-to-the-uns-2014-02feb-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3784

This article describes a 250-m (820-ft)-thick upper Eocene deep-water clastic succession. This succession is divided into two reservoir zones: the lower sandstone zone (LSZ) and the upper sandstone zone, separated by a package of pelitic rocks with variable thickness on the order of tens of meters. The application of sequence-stratigraphic methodology allowed the subdivision of this stratigraphic section into third-order systems tracts.

The LSZ is characterized by blocky and fining-upward beds on well logs, and includes interbedded shale layers of as much as 10 m (33 ft) thick. This zone reaches a maximum thickness of 150 m (492 ft) and fills a trough at least 4 km (2 mi) wide, underlain by an erosional surface. The lower part of this zone consists of coarse- to medium-grained sandstones with good vertical pressure communication. We interpret this unit as vertically and laterally amalgamated channel-fill deposits of high-density turbidity flows accumulated during late forced regression. The sandstones in the upper part of this trough are dominantly medium to fine grained and display an overall fining-upward trend. We interpret them as laterally amalgamated channel-fill deposits of lower density turbidity flows, relative to the ones in the lower part of the LSZ, accumulated during lowstand to early transgression.

The pelitic rocks that separate the two sandstone zones display variable thickness, from 35 to more than 100 m (115–>328 ft), indistinct seismic facies, and no internal markers on well logs, and consist of muddy diamictites with contorted shale rip-up clasts. This section is interpreted as cohesive debris flows and/or mass-transported slumps accumulated during late transgression.

The upper sandstone zone displays a weakly defined blocky well-log signature, where the proportion of sand is higher than 80%, and a jagged well-log signature, where the sand proportion is lower than 60%. The high proportions of sand are associated with a channelized geometry that is well delineated on seismic amplitude maps. Several depositional elements are identified within this zone, including leveed channels, crevasse channels, and splays associated with turbidity flows. This package is interpreted as the product of increased terrigenous sediment supply during highstand normal regression.

Desktop /Portals/0/PackFlashItemImages/WebReady/sequence-stratigraphy-of-the-eocene-turbidite.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 5773
«« First |1 2 3 4 5 6 | Last ››
In-Person Training
Muscat Oman 18 January, 2016 20 January, 2016 16517 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw2016me-hydrocarbon-seals-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Subsalt Traps, Structural Traps, Stratigraphic Traps, Diagenetic Traps, Fractured Carbonate Reservoirs, Reservoir Characterization, Engineering, Seismic Attributes, Geochemical Fingerprinting, 3D Seismic, Sedimentology and Stratigraphy, Sequence Stratigraphy, Evaporites, Clastics, Carbonates, Structure, Fold and Thrust Belts, Compressional Systems, Geomechanics and Fracture Analysis, Production, Drive Mechanisms
Muscat, Oman
18-20 January 2016

This workshop has the primary goal to share knowledge, case studies, techniques and workflows pertaining to the understanding and prediction of hydrocarbon seals for exploration and production in the Middle East. These seals range in age from Pre-Cambrian to Tertiary.    

Abu Dhabi United Arab Emirates 25 January, 2016 26 January, 2016 16518 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw2016me-source-rocks-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geochemistry and Basin Modeling, Source Rock, Development and Operations, Engineering, Conventional Drilling, Directional Drilling, Infill Drilling, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Petroleum Systems, Fluvial Deltaic Systems, Structure, Compressional Systems, Extensional Systems, Sequence Stratigraphy, Stratigraphic Traps, Petrophysics and Well Logs, Basin Modeling, Oil and Gas Analysis, Reservoir Characterization
Abu Dhabi, United Arab Emirates
25-26 January 2016

This three-day workshop aims to provide a forum for professionals from industry, academia and government agencies, who are actively involved in the study of Middle Eastern Source Rocks, to share their advances in source rock related fields, present their experiences and challenges, and demonstrate relevant technologies and solutions.

Lagos Nigeria 22 February, 2016 24 February, 2016 21922 Desktop /Portals/0/PackFlashItemImages/WebReady/sequence-stratigraphy-concepts-principles-applications-clastic-depositional-environments-02feb-2016-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Reservoir Characterization, Geochemistry and Basin Modeling, Source Rock, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Eolian Sandstones, Estuarine Deposits, Fluvial Deltaic Systems, High Stand Deposits, Incised Valley Deposits, Lacustrine Deposits, Low Stand Deposits, Marine, Regressive Deposits, Sheet Sand Deposits, Shelf Sand Deposits, Slope, Transgressive Deposits, Sequence Stratigraphy, Deep Basin Gas, Diagenetic Traps, Stratigraphic Traps, Structural Traps
Lagos, Nigeria
22-24 February 2016
Sequence stratigraphy provides a framework for the integration of geological, geophysical, biostratigraphic and engineering data, with the aim of predicting the distribution of reservoir, source rock and seal lithologies. It gives the geoscientist a powerful predictive tool for regional basin analysis, shelf-to-basin correlation, and characterization of reservoir heterogeneity. This course will examine the underlying geological principles, processes and terminology related to sequence stratigraphic interpretation. The strength of this course is the application of these basic principles to subsurface datasets in a series of well-founded exercises.
Online Training
10 May, 2012 10 May, 2012 1486 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-genetic-sequences-in-eagle-ford-austin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
10 May 2012

Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.

17 February, 2011 17 February, 2011 1469 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-siliclastic-sequence-stratigraphy.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
17 February 2011

This presentation is designed for exploration/production geologists and geological managers or reservoir engineers.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!