Coming Soon!
Recent Posts
No posts yet.

Criteria for recognizing stratigraphic sequences are well established on continental margins but more challenging to apply in basinal settings. We report an investigation of the Upper Devonian Woodford Shale, Permian Basin, west Texas based on a set of four long cores, identifying sea level cycles and stratigraphic sequences in an organic-rich shale.

The Woodford Shale is dominated by organic-rich mudstone, sharply overlain by a bioturbated organic-poor mudstone that is consistent with a second-order eustatic sea level fall. Interbedded with the organic-rich mudstone are carbonate beds, chert beds, and radiolarian laminae, all interpreted as sediment gravity-flow deposits. Bundles of interbedded mudstone and carbonate beds alternate with intervals of organic-rich mudstone and thin radiolaria-rich laminae, defining a 5–10 m (16–33 ft)-thick third-order cyclicity. The former are interpreted to represent highstand systems tracts, whereas the latter are interpreted as representing falling stage, lowstand, and transgressive systems tracts. Carbonate beds predominate in the lower Woodford section, associated with highstand shedding at a second-order scale; chert beds predominate in the upper Woodford section, responding to the second-order lowstand.

Additional variability is introduced by geographic position. Wells nearest the western margin of the basin have the greatest concentration of carbonate beds caused by proximity to a carbonate platform. A well near the southern margin has the greatest concentration of chert beds, resulting from shedding of biogenic silica from a southern source. A well in the basin center has little chert and carbonate; here, third-order sea level cycles were primarily reflected in the stratigraphic distribution of radiolarian-rich laminae.

Explorer Geophysical Corner

This article introduces a new set of seismic attributes that play an important role in extracting detailed stratigraphic information from seismic data.


Sequence stratigraphy and coal cycles based on accommodation trends were investigated in the coal-bearing Lower Cretaceous Mannville Group in the Lloydminster heavy oil field, eastern Alberta. The study area is in a low accommodation setting on the cratonic margin of the Western Canada sedimentary basin. Geophysical log correlation of coal seams, shoreface facies, and the identification of incised valleys has produced a sequence-stratigraphic framework for petrographic data from 3 cored and 115 geophysical-logged wells. Maceral analysis, telovitrinite reflectance, and fluorescence measurements were taken from a total of 206 samples. Three terrestrial depositional environments were interpreted from the petrographic data: ombrotrophic mire coal, limnotelmatic mire coal, and carbonaceous shale horizons. Accommodation-based coal (wetting- and drying-upward) cycles represent trends in depositional environment shifts, and these cycles were used to investigate the development and preservation of the coal seams across the study area.

The low-accommodation strata are characterized by a high-frequency occurrence of significant surfaces, coal seam splitting, paleosol, and incised-valley development. Three sequence boundary unconformities are identified in only 20 m (66 ft) of strata. Coal cycle correlations illustrate that each coal seam in this study area was not produced by a single peat-accumulation episode but as an amalgamation of a series of depositional events. Complex relations between the Cummings and Lloydminster coal seams are caused by the lateral fragmentation of strata resulting from the removal of sediment by subaerial erosion or periods of nondeposition. Syndepositional faulting of the underlying basement rock changed local accommodation space and increased the complexity of the coal cycle development.

This study represents a low-accommodation example from a spectrum of stratigraphic studies that have been used to establish a terrestrial sequence-stratigraphic model. The frequency of changes in coal seam quality is an important control on methane distribution within coalbed methane reservoirs and resource calculations in coal mining. A depositional model based on the coal cycle correlations, as shown by this study, can provide coal quality prediction for coalbed methane exploration, reservoir completions, and coal mining.

Explorer Emphasis Article

New dimensions: Geoscientists study how 3-D views of Eagle Ford outcrops are a great tool.

A new hierarchical architectural classification for clastic marginal-marine depositional systems is presented and illustrated with examples. In ancient rocks, the architectural scheme effectively integrates the scales of sedimentology (core, outcrop) and sequence stratigraphy (wireline-log correlation, reflection seismic). The classification also applies to modern sediments, which allows for direct comparison of architectural units between modern and ancient settings. In marginal-marine systems, the parasequence typically defines reservoir flow units. This classification addresses subparasequence scales of stratigraphy that commonly control fluid flow in these reservoirs. The scheme consists of seven types of architectural units that are placed on five architectural hierarchy levels: hierarchy level I: element (E) and element set (ES); hierarchy level II: element complex (EC) and element complex set (ECS); hierarchy level III: element complex assemblage (ECA); hierarchy level IV: element complex assemblage set (ECAS); and hierarchy level V: transgressive-regressive sequence (T-R sequence). Architectural units in levels I to III are further classified relative to dominant depositional processes (wave, tide, and fluvial) acting at the time of deposition. All architectural units are three-dimensional and can also be expressed in terms of plan-view and cross-sectional geometries. Architectural units can be linked using tree data structures by a set of familial relationships (parent-child, siblings, and cousins), which provides a novel mechanism for managing uncertainty in marginal-marine systems. Using a hierarchical scheme permits classification of different data types at the most appropriate architectural scale. The use of the classification is illustrated in ancient settings by an outcrop and subsurface example from the Campanian Bearpaw–Horseshoe Canyon Formations transition, Alberta, Canada, and in modern settings, by the Mitchell River Delta, northern Australia. The case studies illustrate how the new classification can be used across both modern and ancient systems, in complicated, mixed-process depositional environments.
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.

Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present.

This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography.

The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin.

In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals.

Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.


Considerable effort has been devoted to the development of simulation algorithms for facies modeling, whereas a discussion of how to combine those techniques has not existed. The integration of multiple geologic data into a three-dimensional model, which requires the combination of simulation techniques, is yet a current challenge for reservoir modeling. This article presents a thought process that guides the acquisition and modeling of geologic data at various scales. Our work is based on outcrop data collected from a Jurassic carbonate ramp located in the High Atlas mountain range of Morocco. The study window is 1 km (0.6 mi) wide and 100 m (328.1 ft) thick. We describe and model the spatial and hierarchical arrangement of carbonate bodies spanning from largest to smallest: (1) stacking pattern of high-frequency depositional sequences, (2) facies association, and (3) lithofacies. Five sequence boundaries were modeled using differential global position system mapping and light detection and ranging data. The surface-based model shows a low-angle profile with modest paleotopographic relief at the inner-to-middle ramp transition. Facies associations were populated using truncated Gaussian simulation to preserve ordered trends between the inner, middle, and outer ramps. At the lithofacies scale, field observations and statistical analysis show a mosaiclike distribution that was simulated using a fully stochastic approach with sequential indicator simulation.

This study observes that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The selection and implementation of different techniques customized for each level of the stratigraphic hierarchy will provide the essential computing flexibility to model carbonate settings. This study demonstrates that a scale-dependent modeling approach should be a common procedure when building subsurface and outcrop models.


This article addresses the controls exerted by sedimentologic and diagenetic factors on the preservation and modification of pore-network characteristics (porosity, pore types, sizes, shapes, and distribution) of carbonates belonging to the Bolognano Formation. This formation, exposed at the Majella Mountain, Italy, is composed of Oligocene–Miocene carbonates deposited in middle- to outer-ramp settings. The carbonates consist of (1) grainstones predominantly composed of either larger benthic foraminifera, especially Lepidocyclina, or bryozoans; (2) grainstones to packstones with abundant echinoid plates and spines; and (3) marly wackestones to mudstones with planktonic foraminifera.

The results of this field- and laboratory-based study are consistent with skeletal grain assemblages, grain sizes, sorting, and shapes, all representing the sedimentologic factors responsible for high values of connected primary macroporosity in grainstones deposited on the high-energy, middle to proximal outer ramp. Cementation, responsible for porosity reduction and overall macropore shape and distribution in grainstones to packstones deposited on the intermediate outer ramp, was mainly dependent on the following factors: (1) amount of echinoid plates and spines, (2) grain size, (3) grain sorting and shapes, and (4) clay amount. Differently, in the wackestones to mudstones, laid down on the low-energy, distal outer ramp, matrix is the key sedimentologic factor responsible for low values of scattered macroporosity and dominance of microporosity. The aforementioned results may be useful to improve the prediction of reservoir quality by means of mapping, simulating, and assessing individual carbonate facies with peculiar pore-network characteristics.


The Sierra Diablo Mountains of west Texas contain world-class exposures of Lower Permian (Leonardian) platform carbonates. As such, these outcrops offer key insights into the products of carbonate deposition in the transitional icehouse to greenhouse setting of the early to middle Permian that are available in few other places. They also afford an excellent basis for examining how styles of facies and sequence development vary between inner and outer platform settings.

We collected detailed data on the facies composition and architecture of lower Leonardian high-frequency cycles and sequences from outcrops that provide more than 2 mi (3 km) of continuous exposure. We used these data to define facies stacking patterns along depositional dip across the platform in both low- and high-accommodation settings and to document how these patterns vary systematically among and within sequences.

Like icehouse and waning icehouse successions elsewhere, Leonardian platform deposits are highly cyclic; cycles dominantly comprise aggradational upward-shallowing facies successions that vary according to accommodation setting. Cycles stack into longer duration high-frequency sequences (HFSs) that exhibit systematic variations in facies and cycle architectures. Unlike cycles, HFSs can comprise symmetrical upward-shallowing or upward-deepening facies stacks. High-frequency sequences are not readily definable from one-dimensional stratigraphic sections but require dip-parallel two-dimensional sections and, in most cases, HFS boundaries are best defined in middle platform settings where facies contrast and offset are greatest. These studies demonstrate that HFSs are the dominant architectural element in many platform systems. As such, the lessons learned from these remarkable outcrops provide a sound basis for understanding and modeling carbonate facies architecture in other carbonate-platform successions, especially those of the middle to upper Permian.

«« First |1 2 3 4 5 | Last ››
In-Person Training
14 February, 3000 14 February, 3000 7813
14 February, 3000 14 February, 3000 7815
14 February, 3000 14 February, 3000 7816
14 February, 3000 14 February, 3000 7812
Online Training
10 May, 2012 10 May, 2012 1486
10 May 2012

Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.

17 February, 2011 17 February, 2011 1469
17 February 2011

This presentation is designed for exploration/production geologists and geological managers or reservoir engineers.

14 February, 3000 14 February, 3000 7817
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!