Recent Posts
Bogdan Michka posted Welcome to AAPG N.E.T., an online space where y... to Read This First! in Deepwater and Shelf Gulf of Mexico TIG Discussions
No posts yet.
 

The West Texas (Permian) Basin is a complexly structured intracratonic (IC) basin with prolific oil and natural gas production. It began as a subsidence basin ('Tobosa Basin') from Middle Ordovician to Devonian time, a response to the Cambrian rifting that separated Gondwana and Laurentia. In the Pennsylvanian to early Permian, it formed part of the Ancestral Rocky Mountains (ARM) orogen. The Texas-New Mexico segment of the ARM contains small to medium basement-cored uplifts, folds, thrust faults and two trends of strike-slip faults, with a pattern that is consistent with SW-NE compression. The largest thrust fault known in the basin is SW-vergent, and faces the deepest part of the Delaware Basin. This direction of compression is similar to that observed in the southern Oklahoma part of the ARM, which shows NE-vergent thrusting and left-lateral faulting.

This SW-NE compressive stress is grossly inconsistent with the northwestward convergence of the Ouachita-Marathon thrust belt southeast of the ARM. The ARM-generating stress may have originated either from the Pacific side (by flat subduction) or from strong continental collision in the Appalachian Orogen. Lines of weakness generated during the Proterozoic and/or Cambrian concentrated stress and created the complex structures.

The West Texas branch of the ARM is buried by over 2.5 km of post-deformational Permian strata -- the Permian Basin. Subsidence began during ARM deformation, then increased in rate and continued to the end of the Permian. Permian subsidence resulted in the maintenance of isolated deep-water marine basins until Late Permian time. The Marathon orogen also subsided, and shed little clastic material into the basin. Despite Mesozoic basin-margin modifications, the Permian isopach pattern suggests a bowl-shaped subsidence centered on the Central Basin axis of uplift. The size and shape of the Permian Basin are similar to other IC basins (Illinois, Michigan, Williston). Similar to some IC basins, the central basin area hosts a 1100-Ma mafic complex, which was subjected to compression in Pennsylvanian time. Sinking of a mafic crust or its subjacent lithosphere, begun during compression, may have been a driving force for Permian subsidence.

Over most of the basin, later Permian subsidence was responsible for putting source rocks into the oil window. Further maturation to gas occurred within the deep basins generated by ARM deformation and Marathon thrust loading.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-tectonics-and-subsidence-in-the-west-texas-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Tectonics and Subsidence in the West Texas (Permian) Basin, A Model for Complex Intracratonic Basin Development
 

Comparison of the hydrocarbon systems and geometries of the complex intracratonic West Texas (Permian) Basin and the complex postrift subsidence basins of the Gulf Coast / Gulf of Mexico yield useful insights for basin evolution and play development. The West Texas basin contains source rocks in the Ordovician and Devonian, but much generation comes from the Late Mississippian, Pennsylvanian and Permian basinal sediments. These were deposited in a poorly ventilated remnant basin during compression and strike-slip of the Ancestral Rocky Mountains orogeny, and subsidence of the intracratonic Permian Basin. Maturation resulted from Permian intracratonic subsidence, with hydrocarbons sealed from later leakage by late Permian salt and a fortunate tectonic setting. By contrast, the major Jurassic source rocks of the Gulf basins are at the base of the postrift subsidence, and are matured by further subsidence. Later Cretaceous source rocks (Eagle Ford) are mature in the main Gulf basin, but again lie near the bottom of the thick sedimentary package in the area. The younger part of the succession yields mostly gas formed during outbuilding of the shelf margin by Cenozoic deltaic progradation. No cap is present on the basin (except for subsalt plays), and seepage is widespread.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-tale-of-two-basins-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true A Tale of Two Basins: Sources and Timing of Petroleum and Natural Gas Generation in the Mature Gulf Coast/Gulf of Mexico and West Texas (Permian) Basins
 

The Yegua Formation (Late Middle Eocene) is a minor siliciclastic progradation of the Gulf of Mexico shelf margin between the larger Early Eocene and Oligocene shelf-margin progradations. During Yegua time (and unlike the other units of the Middle and Late Eocene), four to eight sea-level fluctuations with a 100-300 ka period alternately pushed marine rocks toward the basin margins and pushed deltaic sedimentation to and past the shelf edge. Because of limited to moderate sand supply and the flat coastal plains, the updip (highstand) depositional complexes are nearly entirely separated from the downdip (lowstand) shelf-edge deltas and slope fans. Maximum flooding surfaces can be mapped over much of the area and correlated along and across the basin. The Yegua is truly a laboratory for sequence stratigraphy. A number of plays in the downdip and 'mid-dip' (incised valley complexes) trends have produced over 4 TCF of gas and condensate, and new discoveries await the return of exploration capital. The Yegua story is significant to all those interested in siliciclastic stratigraphy in passive-margin settings.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-yegua-formation-late-middle-eocene-in-gulf-coast-basin-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Yegua Formation (Late Middle Eocene) in the Gulf Coast Basin, as a Type Laboratory for Sequence Stratigraphy in Hydrocarbon Exploration
 

The AAPG Foundation is committed to the next generation of geoscientists, from introduction of geology through hands-on programs to grants and scholarships that aid students with their studies.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/preparing-the-next-generation-of-geoscientists-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Preparing the Next Generation of Geoscientists
 

The AAPG European Regional Conference, “Hydrocarbons in the Mediterranean: revisiting mature plays and understanding new and emerging ideas,” will be held Jan. 18-19 in Larnaca, Cyprus.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-hero-2016-12dec.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true European Regional Conference Set for January
 

The story of how the concept of plate tectonics was born, struggled, won its fight for existence and eventually arrived in the oil industry is multi-faceted, insightful and entertaining.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/tectonic-shocks-in-the-oil-industry-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Tectonic Shocks in the Oil Industry
 

AAPG and SPE will be holding the inaugural Africa Energy and Technology Conference this December in Nairobi City.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-hero-2016-11nov.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true AAPG and SPE Head to Kenya
 

Have you made plans to attend ACE this year? AAPG’s 2016 Annual Convention and Exhibition (ACE) is a dedicated opportunity for our members and other professionals to get together.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/curtiss-david-2016-03mar.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Attending ACE Is As Important Now As Ever
 
AAPG is the largest geoscience organization in the free world, and its members know more about frontier areas now being explored than anyone else. Part of our scientific responsibility is to act as advisers, not advocates for one political stand – either for or against climate change. AAPG needs to be part of the conversation.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-hero-2016-01jan.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Commentary: Being Part of the Climate Change Conversation
 

The AAPG-AAPG Foundation Distinguished Lecture program, the Association's flagship initiative for sharing the latest in scientific thought, concepts and advances, starts its new season in November with a lecture tour of North America.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/holbrook-john.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2016 Distinguished Lecturers
«« First « Previous |1 2 3 4 5 6 7 8 9 | Last ››
In-Person Training
Marrakech Morocco 01 November, 2017 04 November, 2017 37903 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Development and Operations, Production, Infill Drilling, Geochemistry and Basin Modeling, Petroleum Systems, Source Rock, Thermal History, Geophysics, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Sequence Stratigraphy, Structure, Compressional Systems, Extensional Systems, Tectonics (General), Deep Basin Gas, Stratigraphic Traps, Structural Traps
 
Marrakech, Morocco
1-4 November 2017

This workshop provides the opportunity to learn and discuss the latest knowledge, techniques & technologies applied to petroleum reservoirs in the Paleozoic of North Africa which can be utilized to explore for and develop these reservoirs. The workshop will provide a set-up for networking, interacting & sharing expertise with fellow petroleum scientists interested in developing and producing hydrocarbon resources within the Paleozoic of North Africa.

Marrakech Morocco 03 November, 2017 04 November, 2017 41272 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Engineering, Compressional Systems, Tectonics (General), Extensional Systems, Source Rock, Petroleum Systems, Thermal History, Sequence Stratigraphy, Clastics, Development and Operations, Production, Structural Traps, Deep Basin Gas, Stratigraphic Traps, Conventional Sandstones, Infill Drilling
 
Marrakech, Morocco
3-4 November 2017

Location: Atlas; Anti-Atlas of Marrakech and Ouarzazate areas of Morocco**
Field Trip Leader: Abdallah Aitsalem (ONHYM) & Lahcen Boutib (ONHYM)
Field Trip Fee: USD575 *

* Field trip pricing covers accommodation, feeding and transportation for the duration of the Trip. Seats are limited and will be confirmed on a first come first served basis.

Day 1 Departure from Marrakech to Ouarzazate

The Atlas Mountains of Marrakech extend more than 250 km East-West and 50 km North-South. They record the highest mountainous peaks in North Africa with altitudes exceeding 4,000 meters (Toubkal 4,165m and Ouenkrim 4,089m). Northward and southward, they rise hundreds of meters above the Marrakech plain (Haouz plain) and Imini syncline, respectively. The recently incised mountain valleys, created during the last inversion of the Atlas, form the crossing ways of the massif, as is the case of the main road that connects Marrakech to Ouarzazate passing via the Tizi n'Tichka Pass. They also provide the opportunity to view multiple breathtaking landscapes and contain outcrops that shed light on the geological evolution of the mountain from the Precambrian to the present. Day 1 of the field trip will allow participants to view Paleozoic outcrops through the Tizi n'Tichka Pass, which displays a complete Cambrian to Devonian succession and contains several organic-rich intervals. Mesozoic and Cenozoic deposits, which are exposed on the borders of the massif, will also be viewed briefly.

Day 2: Departure from Ouarzazate to Tazzarine and back to Ouarzazate **

Day 2 of the field trip crosses the central Anti-Atlas Paleozoic basin and offers spectacular views of the largest oasis in North Africa, along the Draa River, and its majestic ancient Kasbahs. Participants will examine formations ranging in age from Upper Precambrian to Silurian. Discussions will focus on the evolution of their various depositional environments in relation to sea level changes. The well exposed sandstone formations provide the opportunity to view major Paleozoic reservoirsintervals, as well as the organic-rich "hot shales" that source these reservoirs. Rubble from recent water wells and ingenious sub-cropping irrigation systems (Khattara) provide the chance to sample fresh Ordovician and Silurian organic-rich and fossiliferous black shales. In addition, the participants will have perspective views of gentle folding generated during the Hercynian compression and related regional fractures.

Field trip route map
Field trip route map

**Field trip will end in Ouarzazate. All participants to arrange their own transport from Ouarzazate following the conclusion of the field trip.

To register for the field trip please click here.

Georgetown Barima-Waini Guyana 09 November, 2017 10 November, 2017 38161 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-lacr-reservoir-characterization-of-deep-water-systems-impact-from-exploration-to-production-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Risk Analysis, Production, Engineering, Primary Recovery, Secondary Recovery, Geochemistry and Basin Modeling, Petroleum Systems, Petrophysics and Well Logs, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Low Stand Deposits, Marine, Regressive Deposits, Slope, Structure, Tectonics (General), Deep Basin Gas, Shale Gas, Stratigraphic Traps, Tight Gas Sands
 
Georgetown, Barima-Waini, Guyana
9-10 November 2017

This course emphasizes key changes in reservoir models that have a major impact in exploration and production of these reservoirs. The course will include lectures, exercises, and observations from cores, well logs and seismic profiles. Participants will learn how to interpret and map environments of deposition (EoD’s) in deep water systems and understand how the different EoD’s and sub-EoD’s behave as reservoirs.

Online Training
01 January, 2013 01 January, 9999 1459 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-giant-oil-and-gas-fields.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

03 June, 2010 03 June, 2010 1460 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-marcellus-utica-in-the-field.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
3 June 2010

Upon successful completion of this course, you will be able to describe faults and fractures in carbonates, black shales, and coarser clastics as they occur in the northern Appalachian Basin.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Tectonics (General)

Tectonics (General)
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Related Interests

See Also ...