AAPG N.E.T.
Coming Soon!
Recent Posts
No posts yet.

Bulletin Article

3252
 

In prospective basins affected by exhumation, uncertainty commonly exists regarding the maximum burial depths of source, reservoir, and seal horizons. One such basin is the Otway Basin, an important gas province in southeastern Australia, which has witnessed several exhumation events. Here, we present estimates of net exhumation magnitudes for 110 onshore and offshore petroleum wells based on the sonic transit time analyses of Lower Cretaceous fluvial shales. Our results show significant post-Albian net exhumation in the eastern onshore Otway Basin (gt1500 m [sim4920 ft]) and a generally minor net exhumation (lt200 m [sim655 ft]) elsewhere in the Otway Basin, consistent with estimates based on thermal history data. The distribution of net exhumation magnitudes in relation to mid-Cretaceous and Neogene compressional structures indicates that exhumation was dominantly controlled by short-wavelength basin inversion driven by plate-boundary forces.

Deeper burial coupled with high geothermal gradients in the onshore eastern Otway Basin and along the northern basin margin during the early Cretaceous have rendered Lower Cretaceous source rocks mostly overmature, with any remaining hydrocarbons from the initial charge likely to be trapped in tightly compacted reservoirs and/or secondary (fracture-related) porosity. However, the embrittlement of these reservoirs during their deeper burial may present opportunities for the development of low-permeability plays through hydraulic fracturing where smectite clay minerals are illitized. Source rocks at near-maximum burial at present day are at temperatures suitable for gas generation, with key controls on prospectivity in these areas including the sealing potential of faulted traps and the relationship between charge and trap development.

3743
 

Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present.

This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography.

The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin.

In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals.

Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.

Bulletin E P Note

3673
 
Although conventional reservoirs dominate the Bohai Basin, China, a new type of sandstone reservoir also exists in the Dongpu depression that has a low matrix porosity (tight) in which natural fractures govern both permeability and porosity. These fractured sandstones are located on a structurally modified buried hill underlying Paleogene mudstones, and are truncated along an angular unconformity. The fractured sandstone oils of the Triassic Liujiagou, Heshanggou, and Ermaying Formations are derived from the Paleogene Shahejie Formation, which reached peak oil generation and expulsion during the Oligocene to early Miocene (32.8–15.6 Ma). Gas was generated primarily during the Paleogene from Carboniferous and Permian coals. Petrographic evidence suggests that oil and gas emplacement followed the compaction and cementation of the Triassic sandstone reservoirs. Fluid inclusion evidence and burial history analysis suggest that fractures developed before oil emplacement but may have coincided with peak gas generation, which suggests that oil and gas mainly migrated and accumulated in fractures.

Bulletin GeoHorizon

3678
 
The American Association of Petroleum Geologists sponsored a Hedberg Research Conference on Enhanced Geothermal Systems in Napa, California, March 18 to 23, 2011. The workshop was attended by 67 participants from 10 different countries: United States, Australia, Austria, Canada, Colombia, Germany, Malaysia, Netherlands, New Zealand, and Norway.

DL Abstract

3082
 

Using examples from shale reservoirs worldwide, I demonstrate the diversity of shale-hosted fracture systems and present evidence for how and why various fractures systems form. Core and outcrop observations, strength tests on shale and on fractures in core, and geomechanical models allow prediction of fracture patterns and attributes that can be taken into account in well placement and hydraulic fracture treatment design. Both open and sealed fractures can interact with and modify hydraulic fracture size and shape. Open fractures can enhance reservoir permeability but may conduct treatment fluids great distances, in some instances possibly aseismically.

Explorer Director’s Corner

2537
 

Global demand for natural gas continues to grow and the search is on to meet that demand in both the eastern and western hemispheres.

Explorer Division Column EMD

3800
 

Every six months, chairs of the Energy Minerals Division committees convene and report on developments in the areas they cover. In this column, we highlight important observations from these recent reports.

2299
 

The AAPG Energy Minerals Division covers many scientific disciplines and interests – and because previous EXPLORER articles featured shale gas and oil shale, this quarter will focus on highlights from this year’s EMD November Mid-Year Meeting Commodity Reports.

Explorer Historical Highlight

2326
 

After World War II, the United States suddenly found itself with nuclear explosives, a tool for which there were few obvious uses other than spectacular and indiscriminate destruction. 

Explorer Regions and Sections

2022
 

September will be a busy month for the AAPG Sections – two groups will be holding their annual meetings, both in locales that boast geologic industry history and plenty of entertainment opportunities. 

Coming Soon

Check back often. "Find an Expert" feature is coming online soon!