Coming Soon!
Recent Posts
No posts yet.
11057
 
Blog Learn

Participants will examine illustrative outcrops of thrusts, fault-related folds, stratal architectures and facies of depositional systems affected by growing structures, which are good analogues for hydrocarbon reservoirs. Objectives include interpreting complex thrust structures, identifying and understanding strain and fracture systems in fold-thrust belts, and analyzing patterns of growth strata in areas with synsedimentary folding.

8063
 
Explorer Article

Current AAPG Distinguished Lecturer Webster Mohriak is one of the confirmed keynote speakers for the upcoming Atlantic Realm Conjugate Margins Conference, set this August in St. John’s, Newfoundland. Retiring in 2011 after

3088
 

The results of regional deep seismic acquisition in the South Atlantic continental margins have shed new lights on the birth and development of sedimentary basins formed during the Gondwana breakup. Recent models of mantle exhumation as observed in the deep water Iberian margin have been applied extensively to the interpretation of several basins in the Eastern Brazilian and West African conjugate margins. However, the tectonic development of these basins is markedly different from the magma-poor margins, and in this lecture we emphasize the contrasts from the tectono-sedimentary features imaged in deep-penetrating seismic profiles that extend from the platform towards the oceanic crust, which indicate that the Red Sea constitutes a better analogue for the birth of divergent continental margins.

3079
 

Hydrocarbon exploration beneath the shallow allochthonous salt canopy of the ultra-deepwater central Gulf of Mexico has encountered three thick, sand-rich, submarine fan successions that punctuate an otherwise relatively condensed and fine-grained basin center stratigraphy. These sand-rich fans are Late Paleocene, Early Miocene, and Middle Miocene in age and each coincide with periods of very high sediment flux and basin margin instability. They are the primary exploration targets in most ultra-deepwater fields, recent discoveries, and failed exploration tests.

3078
 

The Gulf of Mexico (GOM) is the 9th largest body of water on earth, covering an area of approximately 1.6 million km2 with water depths reaching 4,400 m (14,300’). The basin formed as a result of crustal extension during the early Mesozoic breakup of Pangaea. Rifting occurred from the Late Triassic to early Middle Jurassic. Continued extension through the Middle Jurassic combined with counter-clockwise rotation of crustal blocks away from North America produced highly extended continental crust in the subsiding basin center. Subsidence eventually allowed oceanic water to enter from the west leading to thick, widespread, evaporite deposition. Seafloor spreading initiated in the Late Jurassic eventually splitting the evaporite deposits into northern (USA) and southern (Mexican) basins. Recent work suggests that this may have been accomplished by asymmetric extension, crustal delamination, and exposure of the lower crust or upper mantle rather than true sea floor spreading (or it could be some combination of the two). By 135 Ma almost all extension had ceased and the basic configuration of the GOM basin seen today was established. The Laramide Orogeny was the last major tectonic event impacting the GOM. It caused uplift and erosion for the NW margin from the Late Cretaceous to early Eocene.

844
 
The Gulf of Mexico (GOM) is the 9th largest body of water on earth, covering an area of approximately 1.6 million km2 with water depths reaching 4,400 m (14,300’). The basin formed as a result of crustal extension during the early Mesozoic breakup of Pangaea. Rifting occurred from the Late Triassic to early Middle Jurassic. Continued extension through the Middle Jurassic combined with counter-clockwise rotation of crustal blocks away from North America produced highly extended continental crust in the subsiding basin center. Subsidence eventually allowed oceanic water to enter from the west leading to thick, widespread, evaporite deposition. Seafloor spreading initiated in the Late Jurassic eventually splitting the evaporite deposits into northern (USA) and southern (Mexican) basins. Recent work suggests that this may have been accomplished by asymmetric extension, crustal delamination, and exposure of the lower crust or upper mantle rather than true sea floor spreading (or it could be some combination of the two).
133
 

The Distinguished Lecture program, funded in part by the AAPG Foundation, is the Association’s flagship initiative for spreading the latest in science, technology and professional information.

2540
 
Explorer Geophysical Corner

Fracture zones can be critical to improving or creating sufficient porosity and permeability in hydrocarbon reservoirs – with strain, along with lithology and thickness being the major controls.

3766
 
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
3744
 

A three-dimensional seismic data set and published data from exploration wells were used to reconstruct the tectonostratigraphic evolution of the Mandal High area, southern North Sea, Norway. The Mandal High is an elongated southeast-northwest–trending horst. Three fault families in the Lower Permian sequence, inherited from the basement structural grain of Caledonian origin, are interpreted: (1) a north-northwest–south-southeast–striking fault family, (2) a northeast-southwest–striking fault family, and (3) a near east-west–striking fault family. In addition, an east-southeast–west-northwest–striking fault family (4) that formed during Late Jurassic rifting and was reverse reactivated in the Late Cretaceous is interpreted. We suggest that inversion occurred because of small dextral motion along fault family 1. A final fault family (5) displays various strike orientations and is associated with salt movements.

Seven chronostratigraphic sequences defined by well data and recognized on three-dimensional seismic data are interpreted and mapped: Early Permian rifting in a continental environment; Late Permian deposition of the Zechstein salt and flooding; Triassic continental rifting; uplift and erosion in the Middle Jurassic with deposition of shallow-marine and deltaic sediments; rifting and transgression in a deep-marine environment during the Late Jurassic; a post-rift phase in a marine environment during the Early Cretaceous; and flooding and deposition of the Chalk Group in the Late Cretaceous. An eighth sequence was interpreted—Paleogene–Neogene—but has not been studied in detail. This sequence is dominated by progradation from the east and basin subsidence. Well and seismic data over the Mandal High reveal that large parts of the high were subaerially exposed from Late Permian to Late Jurassic or Early Cretaceous, providing a local source of sediments for adjacent basins.

Similar to the Utsira High, where several large hydrocarbon discoveries have been recently seen, the Mandal High might consist of a set of petroleum plays, including fractured crystalline basement and shallow-marine systems along the flanks of the high, thereby opening up future exploration opportunities.

«« First « Previous |1 2 3 4 | Last ››
In-Person Training
Barcelona Spain 22 September, 2014 26 September, 2014 153
 
Barcelona, Spain
22-26 September 2014

Participants will examine illustrative outcrops of thrusts, fault-related folds, stratal architectures and facies of depositional systems affected by growing structures, which are good analogues for hydrocarbon reservoirs. Objectives include interpreting complex thrust structures, identifying and understanding strain and fracture systems in fold-thrust belts, and analyzing patterns of growth strata in areas with synsedimentary folding.

14 February, 3000 14 February, 3000 7815
 
14 February, 3000 14 February, 3000 7813
 
14 February, 3000 14 February, 3000 7816
 
14 February, 3000 14 February, 3000 7812
 
Online Training
28 April, 2011 28 April, 2011 1471
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

19 August, 2010 19 August, 2010 1462
 
19 August 2010

This presentation will show where there are cases of missing sections, but none of them can be attributed to normal faulting.

14 February, 3000 14 February, 3000 7817
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!