Explorer Article

 
Alternative Resources, Coal, Gas Hydrates, Geothermal, Renewable Energy, Bioenergy, Hydroelectric Energy, Hydrogen Energy, Solar Energy, Wind Energy, Uranium (Nuclear), Business and Economics, Economics, Reserve Estimation, Resource Estimates, Risk Analysis, Development and Operations, Engineering, Conventional Drilling, Coring, Directional Drilling, Infill Drilling, Drive Mechanisms, Production, Depletion Drive, Water Drive, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Gas Injection, Water Flooding, Tertiary Recovery, Chemical Flooding Processes, Microbial Recovery, Miscible Recovery, Thermal Recovery Processes, Reservoir Characterization, Environmental, Ground Water, Hydrology, Monitoring, Natural Resources, Pollution, Reclamation, Remediation, Remote Sensing, Water Resources, Geochemistry and Basin Modeling, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Gravity, Magnetic, Seismic, Petrophysics and Well Logs, Carbonates, Sedimentology and Stratigraphy, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Carbonate Reefs, Dolostones, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Eolian Sandstones, Estuarine Deposits, Fluvial Deltaic Systems, High Stand Deposits, Incised Valley Deposits, Lacustrine Deposits, Low Stand Deposits, Marine, Regressive Deposits, Sheet Sand Deposits, Shelf Sand Deposits, Slope, Transgressive Deposits, Evaporites, Lacustrine Deposits, Salt, Sebkha, Sequence Stratigraphy, Structure, Compressional Systems, Extensional Systems, Fold and Thrust Belts, Geomechanics and Fracture Analysis, Salt Tectonics, Structural Analysis (Other), Tectonics (General), Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Bitumen/Heavy Oil, Oil Shale, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Tight Gas Sands
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-AAPG-Explorer-News-you-need-now.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Bitumen/Heavy Oil, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-AAPG-Explorer-Stay-connected-to-AAPG-and-to-the-world.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Bitumen/Heavy Oil, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-Click-it-read-it-use-it-The-AAPG-Explorer-is-news-for-you.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Bitumen/Heavy Oil, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-AAPG-Explorer-A-world-of-information.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

Workshop

Lithuania 26 October, 2016 26 October, 2016 33520
 
Lithuania
26 October 2016

Join AAPG Europe and the Lithuanian Geological Survey for this exciting Core Workshop. This workshop will follow on from the 'Hydrocarbon Exploration in Lithuania and the Baltic Regions' event taking place at Vilnius University on 24th – 25th October.

The Early Palaeozoic Hydrocarbon System in the Baltic Basin and adjacent territories involves Middle-Late Cambrian, the Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Graptolitic Shales source rocks and the major complexes of reservoirs, associated with Middle Cambrian sandstones, Ordovician and Silurian reefogenic and carbonate build-ups.

The major reservoirs of the Baltic Basin are:

  • The Middle Cambrian (Deimena Fm). Sandstones - Producing
  • The Early Ordovician (Tremadoc, Salantai Fm.) sandstones
  • Late Ordovician (Early Ashgill) organogenic limestones/carbonate buildups
  • Late Silurian (Late Ludlow/Pridoli) reefogenic carbonate build-ups
Core Presentation:
Cores presented from the following 3 reference wells:

1. The Middle Cambrian - the Early Ordovician quartz sandstone reservoirs

The Middle Cambrian Deimena Group sandstones comprises all the major economically important oil fields located Lithuania, Latvia, Kaliningrad district and Polish onshore and Baltic Sea offshore. The other, much less significant, potential reservoirs are the Late Ordovician carbonate build-ups of Gotland (Sweden) and Southern part of Lithuania and the Late Silurian carbonate reefogenic buildups in South Lithuania (Zdanaviciute O., Sakalauskas J. eds., 2001, Zdanaviciute, Lazauskiene 2007; Kanev et al., 1994).

The reference sections would demonstrate core from fine-grained (dominated by 0.25-0.1 mm fraction (30-75%)) quartz sandstones containing thin clay and siltstone interlayers. The sandstones are to a different degree litified by compaction and predominantly cemented by quartz and diagenetic quartz cement that has the major control on reservoir properties.

The Early Ordovician

The early Ordovician Tremadoc age (Pakerort Regional Stage, Salantai Fm.) strata distributed rather locally are a reservoir unit at the base of the Ordovician succession, comprising quartz sandstones and quartz siltstones of only 0.5 to 4 m thick. It overlays directly to the Middle Cambrian Deimena Group sandstones and together form one reservoir unit with similar reservoir properties. The formation is overlain by the Early Ordovician shales. Several small oil fields are producing from this reservoir unit in the western part of Lithuania.


2. The Late Ordovician (Early Ashgill) and Late Silurian (Late Ludlow/Pridoli) organogenic limestone and reefogenic carbonate buildups reservoirs

The Late Ordovician - The Late Silurian

The reservoir rocks within the Silurian succession are the Wenlock - Early Ludlow and Pridolian reefogenic carbonates comprising secondary dolomites and reefal limestones with thicknesses of tens of meters. Silurian sequences are locally distributed along the Eastern slope of the Baltic Basin. The Wenlockian - Early Ludlow strata are up to 28 m thick; the effective porosity ranges from 12% to 17% and average permeabilities – 12-15 mD. The most favourable conditions for the formation of non-structural traps (reef-associated, lithologic-stratigraphic and combined) are associated with the carbonates (mainly stromoporoidal and crinoidal limestones) sucession of about 90 m thick of the late Ludlow- earliest Pridoli (Minija and Ventspils Formations). The reservoir rocks has mean porosities of 6-15 % and up to 26% and permeability ~465mD, reaching up to 2400mD. The Late Silurian reservoir rocks mainly occur in central and southern Lithuania in the central part of the basin.


3. Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Llandovery Black Shales

The Late Ordovician Shales

In the central and eastern part of the Baltic Basin the potential source rocks comprises dark grey and black shales of the Late Ordovician Late Caradoc-Early Asghill Fjacka and Mossen formations. Both units are generally thin, reaching only up to 5–10 m; the thicknesses of Fjack & Mossesn Formations are 6 m and 4 m respectively. TOC content are mostly in the 0.9 to 10 % range, with occasional higher values of up to 15 %. The source rock facies are kerogen type II and II-III.

The Early Silurian Shales

Potential source rocks in the Silurian succession are found within the Llandovery, Wenlock and, presumably, Ludlow-aged strata. The Silurian source rocks are composed of dark grey and black graptolite shales and dark grey and black clayey marlstones. Within the Baltic Basin organic matter content generally ranges from 0.7 to 9–11%, but can be as high as 16.46 % (fig. 5.5.b; Zdanaviciute, Lazauskiene, 2004). In terms of petrography, the organic matter is dominated by syngenetic, sapropelic and marine material, together with vitrinite-like particles and abundant faunal remains. Detrital sapropel is scattered as very fine-grained particles and lenses. Liptinite (up to 20%) generally occurs together with dispersed liptodetrinite in sapropelic organic matter, or more rarely as scattered particles. (Zdanavičiūtė, Swadowska 2002, Zdanaviciute, Lazauskiene, 2004, 2007, 2009).

Maturities in the area of interest attain at pre-Silurian level 1.3% Ro and around 1.0% Ro at Silurian source rock level, and reach 1.9% on the prominent West-Lithuanian local temperature high Zdanaviciute, Lazauskiene, 2004, 2007, 2009)

 

Please note registration for the Core Workshop is available to attendees of the upcoming GTW "Hydrocarbon Exploration in Lithuania and the Baltic Region" on the 24th - 25th October 2016. Please click here for information about the event.

 

 

Coming Soon

Check back often. "Find an Expert" feature is coming online soon!