Guyana Oil Output Breaking All Oil Exploration and Production Records - 22 November, 2024 07:30 AM
ExxonMobil Drops Out of Block with Gas and Oil Discoveries Offshore Suriname - 22 November, 2024 07:30 AM
Iceland Erupts: The Global Impact Could Last Centuries, Geologists Say - 22 November, 2024 07:30 AM
New developments in digital rocks and digital outcrop models continue to put more data – and more realistic data – on geoscientists’ desktops.
This workshop will bring the attendees up to date with the latest academic and case-studies from the field of advanced surface logging technologies.
Over the last decade or so, marine controlled source electromagnetic (CSEM) technology has proven to be an effective tool to de-risk deepwater, really high cost drilling decisions. Yet it, along with magnetotellurics technology (MT), has both good days and bad days in the continuing uncertain financial environment.
It’s widely known that refracturing a horizontal well can help to reduce the interaction between so-called parent and child wells by causing a high stress area around the refractured wells and diverting child well fractures away from the parent well.
The present day Cretaceous Codell oil and gas development in the central portion of the Denver Basin of Colorado can be attributed to an earlier effort in bringing the Codell to the attention of the industry.
For anyone interested in the methods of observing and quantifying the pore systems that control hydrocarbon and flow in unconventional reservoirs, AAPG’s new volume is what you’ve been waiting for. AAPG recently released Memoir 112: “Imaging Unconventional Reservoir Pore Systems.”
The Next 100 Years: Data management is a crucial component of oil exploration. What does the century ahead look like for Big Data in the oil field?
The GEO 2018 committee welcomes your abstracts for oral and poster presentations at the 13th Middle Geosciences Conference and Exhibition (GEO 2018) which will take place from 5 — 8 March in Bahrain. Submit today and join the largest gathering of geoscience professionals in the Middle East.
TIGs and SIGs are designed to encourage greater Member participation in specific topics or interests – and to enhance Member engagement with other Members, and with AAPG. But what is the current roster of TIGs and SIGs – and who do you contact to join their fun?
Relative permeability in shales is an important petrophysical parameter for purposes of accurate estimation of production rate and recovery factor, efficient secondary recovery, and effective water management. We present a method to estimate saturation-dependent relative permeability in shales based on the interpretation of the low-pressure nitrogen adsorption-desorption isotherm measurements. Relative permeability were determined for 30 samples from the gas — and oil — window of Eagle Ford and Wolfcamp shale formations. These sample have low-pressure helium porosity (LPHP) in the range of 0.04 to 0.09 and total organic content (TOC) in the range of 0.02 to 0.06. The samples were ashed to study the effects of removal of organic matter on the pore size distribution, pore connectivity, and relative permeability. The estimated irreducible water saturation and residual hydrocarbon saturation are directly proportional to the TOC and LPHP, and exhibit 15% variation over the entire range. Pore connectivity, in terms of average coordination number, decreases by 33% with the increase in TOC from 0.02 to 0.06. The estimated fractal dimension is close to 2.7 for all the samples. The estimated relative permeability of aqueous phase and that of hydrocarbon phase at a given saturation is inversely proportional to the TOC. Relative permeability curves of the hydrocarbon phase for geological samples from various depths in a 100-feet interval indicate that the hydrocarbon production rate will vary drastically over the entire interval and these variations will increase as the hydrocarbon saturations reduce in the formation. In contrast, relative permeability curves of the aqueous phase suggest limited variation in water production rate over the entire interval. Further, based on the relative permeability curves, the hydrocarbon production is predicted to be negligible for hydrocarbon saturations below 50% and the water production is expected to be negligible for water saturations below than 80%. Efforts are ongoing to use the laboratory-based estimates to predict field-scale production and recovery rates.
Join us for AAPG Orphan, Abandoned, Idle and Marginal Wells Conference 2025. This workshop will focus on orphan, abandoned, idle, and marginal wells and the business opportunities and technology associated with plugging and repurposing wells, reducing methane emissions, protecting water supplies, and extending the lives of marginal wells.
Everyone in Houston lives within a few miles of a bayou. Some people think of them as permanent, but the bayous are constantly changing, especially during high water events like Hurricane Harvey. This trip is a 2.5 mile walk down a section of Buffalo Bayou where we will look at the archives of past storms and discuss what to do for future storms.
This introduction to methane monitoring, measurement, and quantification is for all those who would like to understand the requirements and regulations regarding methane emissions and to be able to design a measurement and monitoring solution, complete with the appropriate types of technologies, techniques, and safety protocols.
Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.
In the past 3 decades the sequence stratigraphy jargon has proliferated, resulting in multiple definitions of the same surface or new surfaces and units based on drawings of deposition in response to relative changes in sea level. The close association between base-level changes, the formation of surfaces, and specific stratal stacking that define systems tracts are at the heart of the confusion. This webinar is proposed a back-to-basics approach, emphasizing key observations that can be made from any geologic data: lithofacies, lithofacies association, vertical stacking, stratal geometries, and stratal terminations.
Gas hydrates, ice-like substances composed of water and gas molecules (methane, ethane, propane, etc.), occur in permafrost areas and in deep water marine environments.
This e-symposium will provide information on which tools, processes, and procedures all geoscientists, engineers, and technical professionals working in shale plays need to understand and implement.
This presentation will look at well placement vertically in the pay, well azimuth and well trajectory with explanations of how geology and post-depositional effects can make the difference between a successful well and a failure.
This presentation describes a proven workflow that uses a standard narrow azimuth 3D seismic, conventional logs, image logs and core data to build five key reservoir properties required for an optimal development of shale plays.
Join us for 'Pivoting 2021: The New Way to Work'. Panelists will discuss the way that work is done, both in operations and support roles, and discuss specific examples of technologies being used, and how they contribute to a safer, more efficient and profitable endeavor. Webinar will be presented via Zoom 7pm - 8:30pm CDT, 9 June 2021.
Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.
This e-symposium provides highlights of the hydraulic fracturing mechanics, analysis, and design, and is derived from a two and one-half (2-1/2) day course which is designed for drilling, completion, production engineers, engineering technicians, geologists, well-site and completion supervisors, and managers, who desire to possess a comprehensive and integral knowledge of Hydraulic Fracturing.
On July 15th, Raffaele Di Cuia and other members ouf the committee for our upcoming Workshop 'Structural Styles and Hydrocarbon Prospectivity in Fold Thrust Belt Settings: A Global Perspective' will be joining the Let's Connect webinar. The call for abstracts for this workshop, to be held in November in Barcelona is open until July 30th. Join this webinar and learn more about how to tackle the issues of Thrust Belt Settings! Register for the webinar and learn more about the face to face GTW!
In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.
Request a visit from Juan I. Soto!
Climate change is not only happening in the atmosphere but also in the anthroposphere; in some ways the former could drive or exacerbate the latter, with extreme weather excursions and extreme excursions from societal norms occurring all over the earth. Accomplishing geoscience for a common goal – whether that is for successful business activities, resource assessment for public planning, mitigating the impacts of geological hazards, or for the sheer love of furthering knowledge and understanding – can and should be done by a workforce that is equitably developed and supported. Difficulty arises when the value of institutional programs to increase equity and diversity is not realized.
Request a visit from Sherilyn Williams-Stroud!
President Biden has laid out a bold and ambitious goal of achieving net-zero carbon emissions in the United States by 2050. The pathway to that target includes cutting total greenhouse gas emissions in half by 2030 and eliminating them entirely from the nation’s electricity sector by 2035. The Office of Fossil Energy and Carbon Management will play an important role in the transition to net-zero carbon emissions by reducing the environmental impacts of fossil energy production and use – and helping decarbonize other hard-to abate sectors.
Request a visit from Jennifer Wilcox!
Subsurface risk and uncertainty are recognized as very important considerations in petroleum geoscience. And even when volume estimates are relatively accurate, the reservoir characteristics that determine well placement and performance can remain highly uncertain. In analyzing results and work practices, three aspects of uncertainty are reviewed here.
Request a visit from Kurt W. Rudolph!
As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.
Request a visit from Tao Sun!
For well over a century there have been conflicting indications of the strength of the crust and of faults and what controls them. Much of our ignorance comes quite naturally from the general inaccessibility of the crust to measurement--in contrast with our understanding of the atmosphere, which is much more accessible to observation as well as more rapidly changing. Crustal strength is best understood in deforming sedimentary basins where the petroleum industry has made great contributions, particularly in deforming petroleum basins because of the practical need to predict. In this talk we take a broad look at key issues in crustal strength and deformation and what we can learn from boreholes, earthquakes, active fault systems, and toy models.
Request a visit from John Suppe!
Physics is an essential component of geophysics but there is much that physics cannot know or address.
Request a visit from John Castagna!
Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.
While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.
Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.
Request a visit from Ameed Ghori!
Ticks and clicks 638687211756598519