Coming Soon!
Recent Posts
No posts yet.
 

The time-worn phrase "everything old is new again" is an apt description for much of the revved-up activity in the oil patch these days.

American Association of Petroleum Geologists (AAPG)
Desktop /portals/0/images/explorer/2014/06jun/berglund-sophie-2014-06june.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

If you’re looking for a promising frontier area to implement your exploration skills, head to Ireland. The country’s Atlantic Basins are an under-explored frontier petroleum province with proven working hydrocarbon systems.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Explorer-cover-2014-05may.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

A crucial aspect of these fluid inclusions… is that they endure in the geologic record although the parent fluids move on. As a result, a given sample contains the fluid history of the area. In other words, despite being microscopic they’re jam-packed with information.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/free-at-last-unlocking-trapped-volatiles-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Assets within the Appalachian Basin range from conventional clastic and carbonate reservoirs to source rocks of Devonian black shale and Pennsylvanian coal, all of which are fractured.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The Gulf of Mexico (GOM) is the 9th largest body of water on earth, covering an area of approximately 1.6 million km2 with water depths reaching 4,400 m (14,300’). The basin formed as a result of crustal extension during the early Mesozoic breakup of Pangaea. Rifting occurred from the Late Triassic to early Middle Jurassic. Continued extension through the Middle Jurassic combined with counter-clockwise rotation of crustal blocks away from North America produced highly extended continental crust in the subsiding basin center. Subsidence eventually allowed oceanic water to enter from the west leading to thick, widespread, evaporite deposition. Seafloor spreading initiated in the Late Jurassic eventually splitting the evaporite deposits into northern (USA) and southern (Mexican) basins. Recent work suggests that this may have been accomplished by asymmetric extension, crustal delamination, and exposure of the lower crust or upper mantle rather than true sea floor spreading (or it could be some combination of the two). By 135 Ma almost all extension had ceased and the basic configuration of the GOM basin seen today was established. The Laramide Orogeny was the last major tectonic event impacting the GOM. It caused uplift and erosion for the NW margin from the Late Cretaceous to early Eocene.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Offshore Angola has to date delivered recoverable reserves in excess of 20 billion barrels of oil equivalent. This has been encountered in two distinct play systems: the Upper Cretaceous Pinda carbonates sourced by Lower Creatceous lacustrine mudstones and Tertiary deepwater slope turbidite sands sourced by underlying Upper Cretaceous marine mudstones. An extension of the Girassol play into Block 18 to the south will be used to describe how high quality 3D seismic data coupled with a detailed analysis of rock properties led to an unprecedented 6 successes out of 6 wells in the block, including the giant Plutonio discovery. Industry is turning once more to the carbonate play potential - this time in deepwater. It would seem that the Angola offshore success story is set to continue for some time to come.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Some things are worth waiting for: The potential of the Tuscaloosa Marine Shale has the E&P industry chomping at the bit, awaiting the seven billion barrels of oil estimated for recovery.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/geologists-excited-about-tms-potential-2013-07july-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

West Edmond field, located in central Oklahoma, is one of the largest oil accumulations in the Silurian–Devonian Hunton Group in this part of the Anadarko Basin. Production from all stratigraphic units in the field exceeds 170 million barrels of oil (MMBO) and 400 billion cubic feet of gas (BCFG), of which approximately 60 MMBO and 100 BCFG have been produced from the Hunton Group. Oil and gas are stratigraphically trapped to the east against the Nemaha uplift, to the north by a regional wedge-out of Hunton strata, and by intraformational diagenetic traps. Hunton Group reservoirs are the Bois d'Arc and Frisco Limestones, with lesser production from the Chimneyhill subgroup, Haragan Shale, and Henryhouse Formation.

Hunton Group cores from three wells that were examined petrographically indicate that complex diagenetic relations influence permeability and reservoir quality. Greatest porosity and permeability are associated with secondary dissolution in packstones and grainstones, forming hydrocarbon reservoirs. The overlying Devonian–Mississippian Woodford Shale is the major petroleum source rock for the Hunton Group in the field, based on one-dimensional and four-dimensional petroleum system models that were calibrated to well temperature and Woodford Shale vitrinite reflectance data. The source rock is marginally mature to mature for oil generation in the area of the West Edmond field, and migration of Woodford oil and gas from deeper parts of the basin also contributed to hydrocarbon accumulation.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Bulletin-hero-2013-07jul.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/a-transition-from-carbonate-shelf-to-pelagic.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

A three-dimensional seismic data set and published data from exploration wells were used to reconstruct the tectonostratigraphic evolution of the Mandal High area, southern North Sea, Norway. The Mandal High is an elongated southeast-northwest–trending horst. Three fault families in the Lower Permian sequence, inherited from the basement structural grain of Caledonian origin, are interpreted: (1) a north-northwest–south-southeast–striking fault family, (2) a northeast-southwest–striking fault family, and (3) a near east-west–striking fault family. In addition, an east-southeast–west-northwest–striking fault family (4) that formed during Late Jurassic rifting and was reverse reactivated in the Late Cretaceous is interpreted. We suggest that inversion occurred because of small dextral motion along fault family 1. A final fault family (5) displays various strike orientations and is associated with salt movements.

Seven chronostratigraphic sequences defined by well data and recognized on three-dimensional seismic data are interpreted and mapped: Early Permian rifting in a continental environment; Late Permian deposition of the Zechstein salt and flooding; Triassic continental rifting; uplift and erosion in the Middle Jurassic with deposition of shallow-marine and deltaic sediments; rifting and transgression in a deep-marine environment during the Late Jurassic; a post-rift phase in a marine environment during the Early Cretaceous; and flooding and deposition of the Chalk Group in the Late Cretaceous. An eighth sequence was interpreted—Paleogene–Neogene—but has not been studied in detail. This sequence is dominated by progradation from the east and basin subsidence. Well and seismic data over the Mandal High reveal that large parts of the high were subaerially exposed from Late Permian to Late Jurassic or Early Cretaceous, providing a local source of sediments for adjacent basins.

Similar to the Utsira High, where several large hydrocarbon discoveries have been recently seen, the Mandal High might consist of a set of petroleum plays, including fractured crystalline basement and shallow-marine systems along the flanks of the high, thereby opening up future exploration opportunities.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/permian-holocene-tectonostratigraphic-evolution-Mandal-High.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First |1 2 3 4 5 6 7 8 | Last ››
In-Person Training
Houston Texas United States 06 December, 2016 08 December, 2016 13606 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-basic-petroleum-geology-for-the-non-geologist.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Engineering, Petrophysics and Well Logs, Basin Modeling, Source Rock, Petroleum Systems, Production
 
Houston, Texas, United States
6-8 December 2016

Here is an introduction to the tools and techniques that geologists and geophysicists use to locate gas and oil, that drillers use to drill the wells and that petroleum engineers use to test and complete the wells and produce the gas and oil. Exercises throughout the course provide practical experience in well log correlation, contouring, interpretation of surface and subsurface, contoured maps, seismic interpretation, well log interpretation, and decline curve analysis.

Online Training
23 April, 2015 23 April, 2015 16809 Desktop /Portals/0/PackFlashItemImages/WebReady/an-analytical-model-for-shale-gas-permeability-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
23 April 2015
Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs.
02 December, 2014 02 December, 2014 11967 Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-multiscale-modeling-of-gas-transport-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
2 December 2014

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used.

30 October, 2014 30 October, 2014 11390 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-kerogen-maturity-determinations.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
30 October 2014

Cross disciplinary workflows play an important part of successful characterization of shale reservoirs. This course discusses how the artificial kerogen maturity of organic-rich Green River shale affects the petrophysical, micro-structural, geochemical and elastic properties.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

09 December, 2010 09 December, 2010 1466 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-bakken-petroleum-system-of-the-williston-basin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
9 December 2010

The Mississippian-Devonian Bakken Petroleum System of the Williston Basin is characterized by low-porosity and permeability reservoirs, organic-rich source rocks, and regional hydrocarbon charge.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!