HomeScience

Science

Explorer Article

The Western Canadian Sedimentary Basin is one of the largest, in area, in the world. Practically the size of all North American basins combined, it boasts the third largest reserves in the world, five major source rocks, numerous reservoirs, a broad range of structural and stratigraphic traps and a host of conventional and unconventional plays.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Last month, the EXPLORER featured an article on the geology of Jezero crater on Mars where NASA’s Perseverance rover will land on Feb. 18, 2021. After a successful landing, Perseverance will begin an astrogeology mission to search for signs of past life on the Red Planet and to gain knowledge to prepare for human exploration. In this month’s installment on the Perseverance mission, we will take a look back at our historical search for life on Mars. There have been intriguing findings, but no conclusive proof that life has or does exist there.

Show more
American Association of Petroleum Geologists (AAPG)
Events Blog

Speaking at a convention such as the AAPG Annual Convention and Exhibition (ACE) can be quite daunting for those with little to no experience with public speaking. However, submitting your abstracts and becoming a speaker can come with a list of benefits for both your personal and professional development.

American Association of Petroleum Geologists (AAPG)
Events Blog

APP-Y ACE Days access to ACE 2020 Online starts today with special pricing from US $179 for professionals and US $35 for students. You can explore the best of ACE 2020 On-Demand – and watch as much as you want, whenever you want – between now and 30 December.  

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Molly Turko has a passion for unraveling complex geological histories and it has taken her to fascinating field locations where there are still mysteries to solve. Join Molly as she shares her story and her favorite outcrops.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Super basin applications and analogs continue to drive the future. As we learn more about them, we discover how valuable super basins are to exploration and development. As a result, AAPG continues its initiative to showcase some of the world’s greatest petroleum basins with the fourth Global Super Basins Leadership Conference.

American Association of Petroleum Geologists (AAPG)
Explorer Division Column DEG

The environment is in your face this year. Here in Los Angeles, we had one of the clearest springs that I can remember. All because the COVID-19 virus resulted in a huge shutdown of most everything that took us outdoors. Come summer and the fires struck the western states. The air turned brown and the visibility went to nearly zero. It stayed that way all the way to summer’s end. This was a huge wakeup call on how sensitive the atmosphere is to changes brought about by aerosols. This brings to mind a story about the biggest tourist attraction in the greater Los Angeles area in the late 19th and early 20th century.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Historical Highlights

During the 1980s, early prospecting in deepwater margins was the simple extension of prolific updip producing basins that were charged. However, the migration of petroleum exploration and development into deepwater was fraught with challenges. For engineers and geologists, one of our biggest challenges was to overcome our collective lack of understanding about the geology of deepwater. We had to revisit everything we thought we knew, one paradigm shift after another.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

The AAPG Women’s Network and the SEPM student community co-hosted a panel discussion in October with AAPG Executive Committee officers. While we addressed many of the audience’s questions during the event, we ran out of time before answering all of the important submitted questions. The panelists decided to share responses with the greater AAPG community through the EXPLORER.

American Association of Petroleum Geologists (AAPG)
Explorer Geophysical Corner

The past few years have seen increasing interest in the application of machine learning techniques in the industry, specifically in seismic interpretation. Over a clastic Tertiary clinoform interval in the public F3-Netherland dataset, we benchmarked advanced neural network algorithms against standard probabilistic lithology classifications from seismic data, to understand their benefits and limitations, and to check which approach works best under which circumstances.

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Muscat, Oman
Sunday, 5 April 2026, 8:00 a.m.–4:30 p.m.

This one-day advanced course delivers a focused and highly practical framework for interpreting structural styles in the Middle East, combined with the unique advantage of applying Generative AI (GenAI) to elevate geological understanding and decision-making. Built for geoscientists working in exploration, development, or basin modeling, the course emphasizes practical techniques, hands-on interpretation, and modern tools that increase accuracy, speed, and confidence in structural workflows. We begin with a foundational module designed to unify all participants, regardless of background, around the principles of fault mechanics and structural style recognition. Participants will revisit faulting fundamentals, mechanical stratigraphy, and structural style classification. The goal is to align interpretation techniques with geological processes, and to establish a shared vocabulary for the day. An introduction to GenAI highlights its role in managing structural ambiguity and enhancing workflows, helping geoscientists clarify options when data is incomplete or conflicting. Normal Faulting Through a sequence of focused exercises, participants explore fault segmentation, growth history, and interpretation in extensional domains. This segment reinforces practical skills in identifying and validating fault geometries in map and section views. GenAI is introduced as a scenario-building tool: participants will use it to explore structural uncertainty, generate alternative models, and compare extensional interpretations, all using fragmented or incomplete datasets, not as a seismic interpreter but as a powerful thought partner. Strike-Slip and Transtension This module targets the complexity of strike-slip and transtensional systems. Participants learn to distinguish pure strike-slip geometries from transtensional overprints, assess compartmentalization, and model realistic deformation patterns. Interpretation exercises develop structural reasoning in map and cross-sectional views. GenAI is applied here to integrate multi-source inputs, such as field data, analogs, and internal reports, to support rapid synthesis and generate testable structural concepts. Salt Tectonics The final segment introduces key diagnostic features of salt-related deformation: welds, reactive and passive diapirs, and halokinetic sequences. Exercises train participants to recognize salt-influenced geometries and link them to broader structural evolution. GenAI then supports pattern recognition and memory mining, leveraging archived knowledge from prior studies, case histories, and analog reports to help geoscientists build and validate interpretations faster and with more confidence. What makes this course different? This is not a theoretical seminar. It’s a learning accelerator, where foundational concepts are applied in realistic interpretation settings, then extended with state-of-the-art GenAI capabilities. You’ll not only sharpen your structural reasoning, but learn how to delegate time-consuming tasks, like synthesizing legacy reports, generating alternative scenarios, or exploring interpretation options, to an intelligent AI partner. By the end of the day, participants will: Recognize and differentiate key fault styles with confidence Improve fault interpretation quality and geological risk assessment Use GenAI to test structural scenarios and extract insight from fragmented or incomplete datasets Accelerate their ability to interpret, communicate, and make decisions in structurally complex plays This course equips you with what matters most today: deep geological understanding, elevated by the best of modern AI. Who Should Attend and Why This course is ideal for both new hires and experienced geoscientists working across exploration, development, and reservoir modeling. Its exercise-driven format ensures that participants with diverse backgrounds, geologists, geophysicists, geomodelers, can engage, learn, and apply. While some familiarity with geosciences is beneficial, prior structural geology training is not required. What makes this course indispensable is its ability to bridge theory and practice: participants will gain a clear understanding of how rocks deform over time, how fault geometries evolve, and how these structures influence seismic interpretation, mapping, and static/dynamic modeling. By integrating real case studies and GenAI-enhanced workflows, the course delivers practical tools to improve subsurface outcomes and build models that match project maturity and business objectives. Main Objective This course delivers the structural geology foundations every geoscientist needs to confidently interpret faults and build or validate static models. Derived from decades of project reviews, interpretation support, and applied field experience, these “must-know” concepts include fault mechanics, growth, segmentation, and structural style recognition, relevant to both exploration and production settings. Participants will strengthen their ability to recognize deformation styles, interpret fault geometries in map and section view, assess mechanical stratigraphy and reactivation risk, and QC interpretations with confidence. Throughout the course, GenAI is introduced not as a software tool, but as a workflow enhancer, used to reduce ambiguity, test structural hypotheses, and extract insight from fragmented datasets or legacy documentation. This empowers geoscientists to think more clearly, work more efficiently, and improve the geological soundness of their models. Key Points Date: 5th April,2026 Venue: Crowne Plaza Hotel, OCEC Registration Fee: $590 Registration Deadline: 22nd February,2026 *Registration will be opening shortly Instructors Pascal Richard PRgeology Jan Witte Falcon-Geoconsulting

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Muscat, Oman
Thursday, 9 April Friday, 10 April 2026, 7:30 a.m.–7:00 p.m.

The Jabal Akhdar in the Central Oman Mountains forms a ~90 km × 60 km dome. The core of this dome consists of Cryogenian to Ediacaran siliciclastics and carbonates, including source rocks. These rocks are separated from the overlying rocks by a spectacularly exposed angular unconformity. The rocks above this unconformity are Permo-Mesozoic shelf carbonates of the Arabian passive margin. The rocks below the unconformity are folded twice, while those above show no such folding. During the Late Cretaceous, Arabia was overthrust by the Samail Ophiolite and Hawasina deep-sea sedimentary rocks. Final doming occurred during the late Eocene to early Miocene. The Jabal Akhdar Dome is a textbook example of stratigraphy and structural geology development from the Cryogenian to the present. Furthermore, findings from the dome can be used as a natural laboratory and serve as an analogue for the hydrocarbon-bearing sequences in interior Oman. The two-day field trip will start at the Saiq Plateau where we will examine Cryogenian Snowball-Earth diamictites with cap carbonates, blended within the scenic landscape of Jabal Akhdar. The second day will start at a breath-taking vista point at Wadi Bani Awf. From there we will descend into the core of the Jabal Akhdar and explore the structural style of the Cryogenian and younger succession. Field Trip Information: Date: 9th – 10th April 2026 Time: 7:30am – 7pm Field Trip fee: $550 Registration Deadline: 5th March 2026 (*registration will be opening shortly) Fees Include: 1 night accommodation in a hotel Guided hiking tour through rose farms and ancient villages in Jebel Akhdar (2–3 hours) Traditional Omani lunch hosted at a local home BBQ dinner in a scenic open area at Jebel Akhdar All transportation (4x4s) Field Trip Leaders Andreas Scharf GUtech Oman Ivan Callegari GUtech Oman Wilfried Bauer GUtech Oman

Show more
American Association of Petroleum Geologists (AAPG)
Workshop
Muscat, Oman
Monday, 6 April Wednesday, 8 April 2026, 8:00 a.m.–5:00 p.m.

The AAPG Structural Styles of the Middle East is back! This exciting and highly anticipated Geoscience Technology Workshop will take place from 6 – 8 April 2026, in Muscat, Oman. This workshop aims to explore the diverse structural styles resulting from the different deformation phases on the tectonostratigraphic framework of the Arabian Plate and adjacent regions.  

American Association of Petroleum Geologists (AAPG)
DL Abstract

Physics is an essential component of geophysics but there is much that physics cannot know or address. 

Request a visit from John Castagna!

American Association of Petroleum Geologists (AAPG)
DL Abstract

The Earth is not a fragile place, but our place on the Earth is very fragile. Geoscience offers a pathway to understand how the Earth has evolved and the role of biological life forms in that evolution.

Request a visit from Lesli Wood!

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Three-dimensional (3D) seismic-reflection surveys provide one of the most important data types for understanding subsurface depositional systems. Quantitative analysis is commonly restricted to geophysical interpretation of elastic properties of rocks in the subsurface. Wide availability of 3D seismic-reflection data and integration provide opportunities for quantitative analysis of subsurface stratigraphic sequences. Here, we integrate traditional seismic-stratigraphic interpretation with quantitative geomorphologic analysis and numerical modeling to explore new insights into submarine-channel evolution.

Show more

Request a visit from Jacob Covault!

American Association of Petroleum Geologists (AAPG)
DL Abstract

While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
VG Abstract

The Betic hinterland, in the westernmost Mediterranean, constitutes a unique example of a stack of metamorphic units. Using a three-dimensional model for the crustal structure of the Betics-Rif area this talk will address the role of crustal flow simultaneously to upper-crustal low-angle faulting in the origin and evolution of the topography.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

President Biden has laid out a bold and ambitious goal of achieving net-zero carbon emissions in the United States by 2050.  The pathway to that target includes cutting total greenhouse gas emissions in half by 2030 and eliminating them entirely from the nation’s electricity sector by 2035. The Office of Fossil Energy and Carbon Management will play an important role in the transition to net-zero carbon emissions by reducing the environmental impacts of fossil energy production and use – and helping decarbonize other hard-to abate sectors.

Show more

Request a visit from Jennifer Wilcox!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Fossil hominin footprints offer a unique and immediate snapshot of our ancestors' lives, capturing their ecological, environmental, and behavioral contexts over remarkably short time scales. This presentation delves into the discovery and analysis of over 400 human footprints from Engare Sero, Tanzania, located on the southern shore of Lake Natron.

Request a visit from Cynthia Liutkus-Pierce!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Why H₂ is generated in subsurface? Which are the reactions and the promising geological setting? Example in countries where H₂ have already been found: Australia, Brazil. Kinetic reactions: i.e., Is the natural H₂ renewable? What we don't know yet about this resource and about the H₂ systems (generation/transport/accumulation). Overview of the current landscape (subsurface law, permitting, E&P activity)

Request a visit from Isabelle Moretti!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Local sea-level changes are not simply a function of global ocean volumes but also the interactions between the solid Earth, the Earth’s gravitational field and the loading and unloading of ice sheets. Contrasting behaviors between Antarctica and Scotland highlight how important the geologic structure beneath the former ice sheets is in determining the interactions between ice sheets and relative sea levels.

Request a visit from Alex Simms!

American Association of Petroleum Geologists (AAPG)

Related Interests