HomeScience Discipline Petrophysics and Well Logs

Petrophysics and Well Logs

Explorer Geophysical Corner

Advances in deep learning and artificial intelligence promise to not only drive our cars but also taste our beer. Specifically, recent advances in the architecture of deep-learning convolutional neural networks have brought the field of image classification and computer vision to a new level.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Saudi Aramco hopes to push the boundaries of exploration by creating and encouraging new technologies. The company said it is pursuing the promise of “the fourth industrial revolution” through Big Data and supercomputing and investigations into nanotechnology applications.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The University of Adelaide sits on a goldmine of geological research opportunity in South Australia’s Bight Basin.

American Association of Petroleum Geologists (AAPG)
Explorer Article

The University of Kansas recently opened its state-of-the-art, $78 million Earth Energy and Environment Center.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

As oilfield tech advances keep pace with Moore’s Law, unconventional resources drive U.S. crude production to record heights.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Who are the “future energy geoscientists” and in what kind of professional world will they work? Veteran petroleum geologist and organizational leader Chandler Wilhelm envisions a changing industry that will require different skills and provide new and different opportunities for young professionals and students beginning to choose their career paths.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Having relevant petrophysical information is vital for successful drilling, completion, and stimulation. However, it has not been easy to find ways to obtain reliable information. Welcome to an interview with Don Herman, who discusses a new tool that logs deviated, horizontal, and vertical wells where wireline could not reach TD. Cordax will be presenting at U-Pitch at URTeC.

American Association of Petroleum Geologists (AAPG)
Explorer Historical Highlights

Imagination, an integrative approach to old-fashioned geology, plus advanced technologies played a leading role in the 2010-13 discovery of the Guama Field in the Plato Region of the Lower Magdalena Basin of Colombia.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The University of Oklahoma’s STACK-MERGE- SCOOP Consortium educates students and industry alike.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Geoscience education is turning out to be a good fit for the modern university, and an especially good way to position students for the future. In part that’s because of the nature of earth science studies, said Stephan Graham, dean of the geoscience school at Stanford University.

American Association of Petroleum Geologists (AAPG)
Field Seminar
Muscat, Oman
Sunday, 5 April 2026, 8:00 a.m.–4:30 p.m.

This one-day advanced course delivers a focused and highly practical framework for interpreting structural styles in the Middle East, combined with the unique advantage of applying Generative AI (GenAI) to elevate geological understanding and decision-making. Built for geoscientists working in exploration, development, or basin modeling, the course emphasizes practical techniques, hands-on interpretation, and modern tools that increase accuracy, speed, and confidence in structural workflows. We begin with a foundational module designed to unify all participants, regardless of background, around the principles of fault mechanics and structural style recognition. Participants will revisit faulting fundamentals, mechanical stratigraphy, and structural style classification. The goal is to align interpretation techniques with geological processes, and to establish a shared vocabulary for the day. An introduction to GenAI highlights its role in managing structural ambiguity and enhancing workflows, helping geoscientists clarify options when data is incomplete or conflicting. Normal Faulting Through a sequence of focused exercises, participants explore fault segmentation, growth history, and interpretation in extensional domains. This segment reinforces practical skills in identifying and validating fault geometries in map and section views. GenAI is introduced as a scenario-building tool: participants will use it to explore structural uncertainty, generate alternative models, and compare extensional interpretations, all using fragmented or incomplete datasets, not as a seismic interpreter but as a powerful thought partner. Strike-Slip and Transtension This module targets the complexity of strike-slip and transtensional systems. Participants learn to distinguish pure strike-slip geometries from transtensional overprints, assess compartmentalization, and model realistic deformation patterns. Interpretation exercises develop structural reasoning in map and cross-sectional views. GenAI is applied here to integrate multi-source inputs, such as field data, analogs, and internal reports, to support rapid synthesis and generate testable structural concepts. Salt Tectonics The final segment introduces key diagnostic features of salt-related deformation: welds, reactive and passive diapirs, and halokinetic sequences. Exercises train participants to recognize salt-influenced geometries and link them to broader structural evolution. GenAI then supports pattern recognition and memory mining, leveraging archived knowledge from prior studies, case histories, and analog reports to help geoscientists build and validate interpretations faster and with more confidence. What makes this course different? This is not a theoretical seminar. It’s a learning accelerator, where foundational concepts are applied in realistic interpretation settings, then extended with state-of-the-art GenAI capabilities. You’ll not only sharpen your structural reasoning, but learn how to delegate time-consuming tasks, like synthesizing legacy reports, generating alternative scenarios, or exploring interpretation options, to an intelligent AI partner. By the end of the day, participants will: Recognize and differentiate key fault styles with confidence Improve fault interpretation quality and geological risk assessment Use GenAI to test structural scenarios and extract insight from fragmented or incomplete datasets Accelerate their ability to interpret, communicate, and make decisions in structurally complex plays This course equips you with what matters most today: deep geological understanding, elevated by the best of modern AI. Who Should Attend and Why This course is ideal for both new hires and experienced geoscientists working across exploration, development, and reservoir modeling. Its exercise-driven format ensures that participants with diverse backgrounds, geologists, geophysicists, geomodelers, can engage, learn, and apply. While some familiarity with geosciences is beneficial, prior structural geology training is not required. What makes this course indispensable is its ability to bridge theory and practice: participants will gain a clear understanding of how rocks deform over time, how fault geometries evolve, and how these structures influence seismic interpretation, mapping, and static/dynamic modeling. By integrating real case studies and GenAI-enhanced workflows, the course delivers practical tools to improve subsurface outcomes and build models that match project maturity and business objectives. Main Objective This course delivers the structural geology foundations every geoscientist needs to confidently interpret faults and build or validate static models. Derived from decades of project reviews, interpretation support, and applied field experience, these “must-know” concepts include fault mechanics, growth, segmentation, and structural style recognition, relevant to both exploration and production settings. Participants will strengthen their ability to recognize deformation styles, interpret fault geometries in map and section view, assess mechanical stratigraphy and reactivation risk, and QC interpretations with confidence. Throughout the course, GenAI is introduced not as a software tool, but as a workflow enhancer, used to reduce ambiguity, test structural hypotheses, and extract insight from fragmented datasets or legacy documentation. This empowers geoscientists to think more clearly, work more efficiently, and improve the geological soundness of their models. Key Points Date: 5th April,2026 Venue: Crowne Plaza Hotel, OCEC Registration Fee: $590 Registration Deadline: 22nd February,2026 *Registration will be opening shortly Instructors Pascal Richard PRgeology Jan Witte Falcon-Geoconsulting

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Muscat, Oman
Thursday, 9 April Friday, 10 April 2026, 7:30 a.m.–7:00 p.m.

The Jabal Akhdar in the Central Oman Mountains forms a ~90 km × 60 km dome. The core of this dome consists of Cryogenian to Ediacaran siliciclastics and carbonates, including source rocks. These rocks are separated from the overlying rocks by a spectacularly exposed angular unconformity. The rocks above this unconformity are Permo-Mesozoic shelf carbonates of the Arabian passive margin. The rocks below the unconformity are folded twice, while those above show no such folding. During the Late Cretaceous, Arabia was overthrust by the Samail Ophiolite and Hawasina deep-sea sedimentary rocks. Final doming occurred during the late Eocene to early Miocene. The Jabal Akhdar Dome is a textbook example of stratigraphy and structural geology development from the Cryogenian to the present. Furthermore, findings from the dome can be used as a natural laboratory and serve as an analogue for the hydrocarbon-bearing sequences in interior Oman. The two-day field trip will start at the Saiq Plateau where we will examine Cryogenian Snowball-Earth diamictites with cap carbonates, blended within the scenic landscape of Jabal Akhdar. The second day will start at a breath-taking vista point at Wadi Bani Awf. From there we will descend into the core of the Jabal Akhdar and explore the structural style of the Cryogenian and younger succession. Field Trip Information: Date: 9th – 10th April 2026 Time: 7:30am – 7pm Field Trip fee: $550 Registration Deadline: 5th March 2026 (*registration will be opening shortly) Fees Include: 1 night accommodation in a hotel Guided hiking tour through rose farms and ancient villages in Jebel Akhdar (2–3 hours) Traditional Omani lunch hosted at a local home BBQ dinner in a scenic open area at Jebel Akhdar All transportation (4x4s) Field Trip Leaders Andreas Scharf GUtech Oman Ivan Callegari GUtech Oman Wilfried Bauer GUtech Oman

Show more
American Association of Petroleum Geologists (AAPG)
Workshop
Muscat, Oman
Monday, 6 April Wednesday, 8 April 2026, 8:00 a.m.–5:00 p.m.

The AAPG Structural Styles of the Middle East is back! This exciting and highly anticipated Geoscience Technology Workshop will take place from 6 – 8 April 2026, in Muscat, Oman. This workshop aims to explore the diverse structural styles resulting from the different deformation phases on the tectonostratigraphic framework of the Arabian Plate and adjacent regions.  

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 15 March 2012, 12:00 a.m.–12:00 a.m.

This e-symposium presents techniques for predicting pore pressure in seals by examining case studies from the Gulf of Mexico and incorporating the relationship between rocks, fluids, stress, and pressure.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 27 August 2020, 3:00 p.m.–4:00 p.m.

There are over 300 known active onshore mud volcanoes globally, and many more offshore. Mud volcanoes are subsurface fluid escape features in which high pore pressures drive fluids, gases, and subsurface sediments to the surface. This talk will summarize mud volcanoes around the world and examine mud volcano plumbing systems and their link to petroleum systems.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 30 June 2020, 3:00 p.m.–4:00 p.m.

El geocientífico visitante Juan Pablo Lovecchio revisa aspectos generales de la ruptura, grietas y formación pasiva de márgenes y evolución a través del tiempo, así como elementos del desarrollo del sistema petrolero.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 10 November 2011, 12:00 a.m.–12:00 a.m.

This work investigates how heterogeneity can be defined and how we can quantify this term by describing a range of statistical heterogeneity (e.g. coefficient of variation and the Lorenz coefficient).

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 25 June 2020, 8:00 a.m.–9:00 a.m.

Panelists will discuss current unconventional resource activities in North America, including key plays that remain competitive and potential for future growth. They also will address the key challenges for unconventional resources to stay competitive in the global market: maintaining cashflow, reducing expenditures, improving capital and production efficiencies and managing resources. Virtual Forum to be presented via Zoom.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 24 October 2013, 12:00 a.m.–12:00 a.m.

This e-symposium will be introducing signal processing techniques as a means to maximize extracting geomechanical data from petrophysical logs.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 11 November 2010, 12:00 a.m.–12:00 a.m.

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Wednesday, 9 February 2022, 8:00 a.m.–9:00 a.m.

 This talk will provide information to better understand the principles of surface geochemistry (SG), how best to use SG data in exploration or development programs, how to develop a cost effective sampling and analytical program, and will also explore best practices for the interpretation and integration of SG data.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 2 October 2014, 2:00 p.m.–3:00 p.m.

This course is ideal for individuals involved in Midland Basin exploration and development. Successful development of Wolfcamp shale oil relies on complex inter-relationships (ultimately interdependencies) within and between a wide variety of scientific disciplines, financial entities, and company partnerships. 

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 14 July 2020, 11:00 a.m.–12:00 p.m.

The Santos Basin is an excellent example of how much oil is kept in remote sites, just waiting to be found by bold explorationists with the will and resources needed to find them. Join Flávio Feijó to for a presentation of the history and potential for future discoveries in the Santos Basin Webinar will be presented via Zoom on Tuesday 14 July 2020 at 11am CDT (UMT-6). Register Now at Zoom

American Association of Petroleum Geologists (AAPG)
DL Abstract

The Energy sector is a changing business environment. Throughout the 20th century fluctuations of oil supply and demand produced changes in the barrel price that pushed the growth or shrinkage of the industry. In this 21st century, new challenges such as diversification of the energy mix, boosting gas demand, require the exploration of critical minerals and development of new technologies as well.

Request a visit from Fernanda Raggio!

American Association of Petroleum Geologists (AAPG)
VG Abstract

In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Around 170 million years ago, the Gulf of Mexico basin flooded catastrophically, and the pre-existing landscape, which had been a very rugged, arid, semi-desert world, was drowned beneath an inland sea of salt water. The drowned landscape was then buried under kilometers of salt, perfectly preserving the older topography. Now, with high-quality 3D seismic data, the salt appears as a transparent layer, and the details of the drowned world can be seen in exquisite detail, providing a unique snapshot of the world on the eve of the flooding event. We can map out hills and valleys, and a system of river gullies and a large, meandering river system. These rivers in turn fed into a deep central lake, whose surface was about 750m below global sea level. This new knowledge also reveals how the Louann Salt was deposited. In contrast to published models, the salt was deposited in a deep water, hypersaline sea. We can estimate the rate of deposition, and it was very fast; we believe that the entire thickness of several kilometers of salt was laid down in a few tens of thousands of years, making it possibly the fastest sustained deposition seen so far in the geological record.

Show more

Request a visit from Frank Peel!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Engineering of wind farms, development of carbon sequestration projects in shelfal waters, the proliferation of communication cables that connect the world, all of these things suggest that it is time to re-examine what we know about shelf processes both updip-to-downdip and along shoreline, and the influence of shelf processes on erosion and transport of sediments.

Request a visit from Lesli Wood!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Physics is an essential component of geophysics but there is much that physics cannot know or address. 

Request a visit from John Castagna!

American Association of Petroleum Geologists (AAPG)
VG Abstract

The Betic hinterland, in the westernmost Mediterranean, constitutes a unique example of a stack of metamorphic units. Using a three-dimensional model for the crustal structure of the Betics-Rif area this talk will address the role of crustal flow simultaneously to upper-crustal low-angle faulting in the origin and evolution of the topography.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.

Show more

Request a visit from Tao Sun!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
DL Abstract

While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)

See Also ...

Ticks and clicks 638863641501120573