Explorer Emphasis Article

Newfoundland-based GRI Simulations has logged innumerable hours working on its Virtual Arctic Simulation Environment to enable scientists to evaluate the perilous area from the comfort of their offices.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Arctic exploration and production is not for the timid. Nor for those without deep pockets.

American Association of Petroleum Geologists (AAPG)
Energy Policy Blog

In January several long-awaited actions are likely: The Nebraska Supreme Court should rule on a suit challenging the right of the governor to approve the pipeline route; President Obama may decide whether to issue a presidential permit; and the House and Senate plan votes on legislation to approve the pipeline without a presidential permit.

American Association of Petroleum Geologists (AAPG)
Explorer Article

It is perhaps the most ironic move in the industry in years. On Nov. 4, citizens in Denton – a city on the edge of the Barnett Shale in north Texas with a population of 123,000 – voted to ban hydraulic fracturing.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

When it comes to downhole geology, little things matter. Those “things” would include the realm of microseismic measurements, because as unconventional plays and hydraulic fracturing become the norm throughout the industry, the need for microseismic imaging grows in importance. Companies large and small are constantly developing, testing and using this technology, hoping to add value to today’s efforts.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The idea of using lasers for drilling into the earth has long been to the oil and gas industry what flying cars and hoverboards are to the general public – the stuff of science fiction and futuristic fantasy. As 2015 fast approaches (contrary to what we were promised in the “Back to the Future” movies) we haven’t quite cracked the code yet on flying cars and hoverboards, but there might be a consolation prize in the works: Laser drilling may actually become a reality.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

What’s new in downhole geology, you ask? According to the advertising and press releases that are sent throughout the media, there’s a lot that’s new – more, in fact, than we could ever cover. But since this is our annual Downhole Geology issue, we thought we’d take a look at some of the latest advancements in drilling, well-logging and other downhole innovations rolled out in recent months by a few industry heavy-hitters.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

After many months of harnessing mind-bending ideas, a Houston-based team of engineers, geologists and geophysicists has developed technology to monitor hydraulic fractures from the surface and wellbore simultaneously. Adding multiple dimensions to the monitoring process, they say, allows operators to more clearly understand drainage patterns of hydrocarbons in shale reservoirs and, more importantly, know with greater certainty where to drill the next well, how to optimize completions and maximize asset value.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

Pumps & Pipes brings together the newest technologies from the oil and gas, medical and aerospace professions in Houston to talk about something they all have in common: Problems. More specifically, members talk about problems because someone else in the room – from a completely different discipline and expertise – may already have found an effective solution.

American Association of Petroleum Geologists (AAPG)
Explorer Policy Watch

In the age of 3-D seismic and digitized well logs, the value of cores and other rock samples may not be obvious. But benefits like those noted by the AAPG in 1948 and described in a 2002 National Research Council report and a recent congressional hearing continue to demonstrate the value of properly archived subsurface samples and data.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
VG Abstract

In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Physics is an essential component of geophysics but there is much that physics cannot know or address. 

Request a visit from John Castagna!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Around 170 million years ago, the Gulf of Mexico basin flooded catastrophically, and the pre-existing landscape, which had been a very rugged, arid, semi-desert world, was drowned beneath an inland sea of salt water. The drowned landscape was then buried under kilometers of salt, perfectly preserving the older topography. Now, with high-quality 3D seismic data, the salt appears as a transparent layer, and the details of the drowned world can be seen in exquisite detail, providing a unique snapshot of the world on the eve of the flooding event. We can map out hills and valleys, and a system of river gullies and a large, meandering river system. These rivers in turn fed into a deep central lake, whose surface was about 750m below global sea level. This new knowledge also reveals how the Louann Salt was deposited. In contrast to published models, the salt was deposited in a deep water, hypersaline sea. We can estimate the rate of deposition, and it was very fast; we believe that the entire thickness of several kilometers of salt was laid down in a few tens of thousands of years, making it possibly the fastest sustained deposition seen so far in the geological record.

Show more

Request a visit from Frank Peel!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Climate change is not only happening in the atmosphere but also in the anthroposphere; in some ways the former could drive or exacerbate the latter, with extreme weather excursions and extreme excursions from societal norms occurring all over the earth. Accomplishing geoscience for a common goal – whether that is for successful business activities, resource assessment for public planning, mitigating the impacts of geological hazards, or for the sheer love of furthering knowledge and understanding – can and should be done by a workforce that is equitably developed and supported. Difficulty arises when the value of institutional programs to increase equity and diversity is not realized.

Show more

Request a visit from Sherilyn Williams-Stroud!

American Association of Petroleum Geologists (AAPG)
VG Abstract

The Betic hinterland, in the westernmost Mediterranean, constitutes a unique example of a stack of metamorphic units. Using a three-dimensional model for the crustal structure of the Betics-Rif area this talk will address the role of crustal flow simultaneously to upper-crustal low-angle faulting in the origin and evolution of the topography.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.

Show more

Request a visit from Tao Sun!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Three-dimensional (3D) seismic-reflection surveys provide one of the most important data types for understanding subsurface depositional systems. Quantitative analysis is commonly restricted to geophysical interpretation of elastic properties of rocks in the subsurface. Wide availability of 3D seismic-reflection data and integration provide opportunities for quantitative analysis of subsurface stratigraphic sequences. Here, we integrate traditional seismic-stratigraphic interpretation with quantitative geomorphologic analysis and numerical modeling to explore new insights into submarine-channel evolution.

Show more

Request a visit from Jacob Covault!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...