Explorer Article

It's not just for U.S. companies anymore: Count Australian firms among those international players who are discovering the joys of exploration in the Gulf of Mexico.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Geology without borders: An exploration renaissance is under way in eastern Canada, thanks to the prolific Trenton-Black River fairway.

American Association of Petroleum Geologists (AAPG)
Explorer Article

A new format for training is introduced through AAPG's Education programs. The WEC may be just what you've been waiting for.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The petroleum industry and government researchers have joined forces to study gas hydrate accumulations in the Gulf of Mexico.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

There's more to Alaska than Prudhoe Bay: New technology and some surprising geological discoveries are helping to reawaken Alaska's petroleum promise.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Working it out ... DOE workshop examines applications for microhole technology.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Small technology and instrumentation have revolutionized much of the world, so why not the oil industry? Get ready for microhole technology.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Are the years of research about to pay off? The future of laser drilling seems to be closer than ever to reality.

American Association of Petroleum Geologists (AAPG)
Explorer Article

John Darley challenges geoscientists to optimize technology to develop hydrocarbon resources.

American Association of Petroleum Geologists (AAPG)
Explorer Article

The story of the deepwater Tahiti discovery continues to unfold, confirming that giants still stand tall in the Gulf of Mexico.

American Association of Petroleum Geologists (AAPG)
Field Seminar
Palermo, Italy
Thursday, 25 April 2024, 8:00 a.m.–9:00 a.m.

This one-day field trip will provide an introduction to a Miocene-Pliocene succession of southern Sicily, which includes outcrops of the Messinian Salinity Crisis (MSC), as well as the Messinian-Zanclean GSSP (Global Boundary Stratotype Sections and Point) and Zanclean stratotype. The MSC sedimentary record consists of an evaporitic-carbonate unit at the base (the Basal Limestone), overlain the Lower Gypsum unit, in turn overlain by the Upper Gypsum unit, and sealed by transgressive chalk deposits of the Trubi Fm. The Lower Gypsum unit (massive gypsum with cm-sized selenite crystals) will be visited along the beach of Siculiana Marina (about 15 km NW of Agrigento). Next, we will visit near Capo Rossello (about 10 km NW of Agrigento) an outcrop of the Upper Gypsum unit consisting of clay-gypsum cycles and overlain by the Trubi Fm. The latter, at Scala dei Turchi beach, consists of chalk deposits arranged in a spectacular thick succession (~120 m thick) interpreted as astronomically-controlled depositional cycles. The uppermost interval of the MSC sedimentary record, including the Messinian-Zanclean GSSP, will be observed along the beach of Eraclea Minoa located about 20 km NW of Capo Rossello. Pricing Fee: €50 Attendee Limit: Min 15 - Max 50 People Registration Deadline: 11 April 2024 Field Trip Rendezvous Point Hotel nH Palermo Field Trip Leaders Antonio Caruso University of Palermo Attilio Sulli University of Palermo

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Palermo, Italy
Sunday, 21 April 2024, 8:00 a.m.–5:00 p.m.

This one-day field trip will focus on Mesozoic (Jurassic to Cretaceous) carbonates outcropping in the fold and thrust belt of western Sicily and equivalent to the aquifer complex of the Sciacca Geothermal Field located in the southwestern part of the island. Participants will have the opportunity to visit in the first stop a spectacular “drowned” carbonate-platform succession at Mt. Maranfusa located in an inactive quarry about 50 km SW of Palermo. The succession consists of Lower Jurassic peritidal cycles overlain by Middle Jurassic to Cretaceous pelagic limestone (e.g. ammonitic limestone, “chalk”) and marked by an unconformity with locally hardground. Syn-depositional Mesozoic tectonic is characterized by neptunian dykes and normal faults, whereas reverse faults, strike-slip faults, and joints are related to subsequent Cenozoic deformation. In the second stop, at Mt. San Calogero, adjacent to the picturesque coastal town of Sciacca (about 100 km south of Palermo), we will visit the surface expression of an extensive karst system linked to uprising geothermal fluids. Furthermore, we will discuss main characteristics of the Sciacca Geothermal Field and its connection to deep mantle-derived fluids. Outcrop data will be integrated with both 2D seismic lines and exploration well logs showing the stratigraphy and structure of the deep aquifer. Given the presence of faults and joints in the outcrops, this field trip can provide the participants with valuable insights into naturally fractured reservoirs at the sub-seismic scale. Pricing Fee: €50 Attendee Limit: Min15 - Max 45 People Registration Deadline: 11 April 2024 Field Trip Leaders Gianni Mallarino MOL Group Attilio Sulli University of Palermo

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Banff, Canada
Saturday, 11 May 2024, 8:00 a.m.–3:00 p.m.

Time: 8:00am - 5:00pm Fee: $300 AAPG members $350 Nonmembers $200 Academic/AAPG Emeritus Members $50 discount for workshop registrants Fee Includes: Transportation Insurance Field guide Entrance fee to Banff National Park Registration available during workshop registration This field trip will focus on the structural geology of the foothills and Front Ranges of Banff. Participants will be able to view excellent field examples of structures very similar to the producing oil and gas fields in the foothills to the west of Calgary and to learn about the complexities of sub-seismic-scale deformation. The field trip starts with an introduction to the interaction between thrust front with foreland basins and the interaction of basement trends with thrust belt geometries and (conventional) hydrocarbon fields. During the 1-day trip participants will follow a dip transect from the undeformed foreland basin, the eastern edge of the foothills marked by the triangle zone, the Front Ranges boundary and end at the Main Ranges west of Banff. Field Trip Itinerary Depart from Calgary – 8:00 a.m. Stop 1: Cochrane Retreat Road Overlook Trip overview and introduction; safety and logistics comments; interaction of thrust front with foreland basin; interaction of basement trends with thrust belt geometry and (conventional) hydrocarbon field distribution; appreciation of scale for subsurface play fairway. Stop 2: Scott Lake Stop 3: The Stony Nakoda Tim’s Classic stop, with historical importance for understanding the thrust belt and thrust geometry. Part 1 of displacement gradient on a large thrust. Most importantly, toilet stop after all the Tim’s coffee and driving. Review of Mt Yamnuska from a different perspective; preview of drive through McConnell damage zone and change in HW stratigraphy.. Stop 4: Lac des Arcs Imbricate thrust sheets in the Front Ranges and Banff Formation. Stop 5: Canmore T-junction Observe complexities of sub-seismic-scale deformation in mechanically layered rocks in the footwall of a large thrust Stop 6: Canmore strike view of the Rundle thrust Exposed strike view analogous to a cut-away of a giant conventional Foothills hydrocarbon field such as Turner Valley. Cross faults within the thrust sheet offset potential reservoir units at sub-seismic scale. Cross faults are arguably part of a regional trend associated with deeper, basement-rooted NE-SW structures. Stop 7: Mt Norquay Overlook Stop 8: Bow Falls Fracture systems in the Vega Siltstone Mbr of the Triassic Sulphur Mtn Fm. This outcrop of Vega Member siltstone of the Sulphur Mtn Fm is considered equivalent to upper Montney Fm. We will focus on the outcrop adjacent to the steps up to the Falls overlook.

Show more
American Association of Petroleum Geologists (AAPG)
Workshop
Palermo, Italy
Monday, 22 April Wednesday, 24 April 2024, 8:00 a.m.–5:00 p.m.

This Symposium marks a collaborative event that brings together AAPG Europe and AAPG Middle East, with a central focus on carbonates and mixed carbonate systems worldwide, while highlighting their significance within these two regions. The primary objectives are an overview of controls that govern the evolution of these systems in time and space and the characterization and prediction of their properties across scales.

American Association of Petroleum Geologists (AAPG)
Workshop
Abu Dhabi, UAE
Monday, 27 May Wednesday, 29 May 2024, 8:00 a.m.–5:00 p.m.

In order to support the energy transition, optimizing exploration and production from complex stratigraphic-diagenetic conventional and unconventional plays remains highly important. At the same time, Carbon Capture and Storage (CCS) poses new technological challenges that will impact both the industry and academia for decades to come. This 2nd edition will present reviews and discuss technology developments in geological process-based forward modeling achieved during the last 2 years. New perspectives for future technology developments and implementation in industry workflows will be discussed and with the additional focus on CO₂ storage and other sustainability-related applications, the scope of the workshop will be considerably extended.

Show more
American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
VG Abstract

The Betic hinterland, in the westernmost Mediterranean, constitutes a unique example of a stack of metamorphic units. Using a three-dimensional model for the crustal structure of the Betics-Rif area this talk will address the role of crustal flow simultaneously to upper-crustal low-angle faulting in the origin and evolution of the topography.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Around 170 million years ago, the Gulf of Mexico basin flooded catastrophically, and the pre-existing landscape, which had been a very rugged, arid, semi-desert world, was drowned beneath an inland sea of salt water. The drowned landscape was then buried under kilometers of salt, perfectly preserving the older topography. Now, with high-quality 3D seismic data, the salt appears as a transparent layer, and the details of the drowned world can be seen in exquisite detail, providing a unique snapshot of the world on the eve of the flooding event. We can map out hills and valleys, and a system of river gullies and a large, meandering river system. These rivers in turn fed into a deep central lake, whose surface was about 750m below global sea level. This new knowledge also reveals how the Louann Salt was deposited. In contrast to published models, the salt was deposited in a deep water, hypersaline sea. We can estimate the rate of deposition, and it was very fast; we believe that the entire thickness of several kilometers of salt was laid down in a few tens of thousands of years, making it possibly the fastest sustained deposition seen so far in the geological record.

Show more

Request a visit from Frank Peel!

American Association of Petroleum Geologists (AAPG)
DL Abstract

While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
DL Abstract

As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.

Show more

Request a visit from Tao Sun!

American Association of Petroleum Geologists (AAPG)
VG Abstract

The carbonate sequences that were deposited in the now exhumed Tethyan Ocean influence many aspects of our lives today, either by supplying the energy that warms our homes and the fuel that powers our cars or providing the stunning landscapes for both winter and summer vacations. They also represent some of the most intensely studied rock formations in the world and have provided geoscientists with a fascinating insight into the turbulent nature of 250 Million years of Earth’s history. By combining studies from the full range of geoscience disciplines this presentation will trace the development of these carbonate sequences from their initial formation on the margins of large ancient continental masses to their present day locations in and around the Greater Mediterranean and Near East region. The first order control on growth patterns and carbonate platform development by the regional plate-tectonic setting, underlying basin architecture and fluctuations in sea level will be illustrated. The organisms that contribute to sequence development will be revealed to be treasure troves of forensic information. Finally, these rock sequences will be shown to contain all the ingredients necessary to form and retain hydrocarbons and the manner in which major post-depositional tectonic events led to the formation of some of the largest hydrocarbon accumulations in the world will be demonstrated.

Show more

Request a visit from Keith Gerdes!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Physics is an essential component of geophysics but there is much that physics cannot know or address. 

Request a visit from John Castagna!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Local sea-level changes are not simply a function of global ocean volumes but also the interactions between the solid Earth, the Earth’s gravitational field and the loading and unloading of ice sheets. Contrasting behaviors between Antarctica and Scotland highlight how important the geologic structure beneath the former ice sheets is in determining the interactions between ice sheets and relative sea levels.

Request a visit from Alex Simms!

American Association of Petroleum Geologists (AAPG)
VG Abstract

In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.

Request a visit from Juan I. Soto!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...