HomeScience 

Play Types

Coalbed Methane

Coming Soon!
Recent Posts
No posts yet.
 
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-assessment-forecasting-and-decision-making-in-unconventional-resource-plays.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
The past 30+ years have witnessed a wide variety of exploration strategies and a number of technological “revolutions” in the search for oil and gas. Although the exploration landscape and tools of the trade are so different than they were in the early 1980’s, in one aspect we appear to have come full circle, realizing that a deep understanding of our basins is the critical element in any success.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-2015-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Marita Bradshaw, an AAPG member and retired geologist with Geoscience Australia, has spent her career helping to uncover Australia’s oil and gas potential and is now pleased to see recent large discoveries on the continent and the expansion of the export LNG industry. A symposium will be held in her honor this month at the AAPG-SEG International Convention and Exhibition (ICE) in Melbourne.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/marita-bradshaw-moving-australia-forward-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
In the coming year, the Energy Minerals Division is looking to improve and expand its information delivery system. EMD also is seeking volunteers to fill a number of vacant section and region councilor positions.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-cover-2015-08aug.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

AAPG offers two short courses in conjunction with this year’s Unconventional Resources Technology Conference (URTeC). A wealth of information in a short period of time, theses short courses are an effective and efficient way to learn about the industry.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/AAPG-learn-blog-200x200.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
This year, URTeC has added an enhanced preview of “Coming Attractions.” In addition to looking at established plays, URTeC will provide significant information about emerging unconventional resource possibilities in North America and around the world.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/global-spotlight-shines-on-emerging-shale-plays-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Desktop /Portals/0/docs/emd/reports/annual-meeting/2014-04-05/2014-04-05-EMDAnnualMeetingCommitteeCoalbedMethane.pdf?pdfwidth=306&pdfheight=400&subpixels=true&page=1&format=jpg&width=100&height=100&mode=crop&anchor=topcenter&quality=90&encoder=freeimage&progressive=true&trim.threshold=255
 

The influence of moisture, temperature, coal rank, and differential enthalpy on the methane (CH4) and carbon dioxide (CO2) sorption capacity of coals of different rank has been investigated by using high-pressure sorption isotherms at 303, 318, and 333 K (CH4) and 318, 333, and 348 K (CO2), respectively. The variation of sorption capacity was studied as a function of burial depth of coal seams using the corresponding Langmuir parameters in combination with a geothermal gradient of 0.03 K/m and a normal hydrostatic pressure gradient. Taking the gas content corresponding to 100% gas saturation at maximum burial depth as a reference value, the theoretical CH4 saturation after the uplift of the coal seam was computed as a function of depth. According to these calculations, the change in sorption capacity caused by changing pressure, temperature conditions during uplift will lead consistently to high saturation values. Therefore, the commonly observed undersaturation of coal seams is most likely related to dismigration (losses into adjacent formations and atmosphere). Finally, we attempt to identify sweet spots for CO2-enhanced coalbed methane (CO2-ECBM) production. The CO2-ECBM is expected to become less effective with increasing depth because the CO2-to-CH4 sorption capacity ratio decreases with increasing temperature and pressure. Furthermore, CO2-ECBM efficiency will decrease with increasing maturity because of the highest sorption capacity ratio and affinity difference between CO2 and CH4 for low mature coals.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Bulletin-cover-Feb-14-400px.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Using diverse geologic and geophysical data from recent exploration and development, and experimental results of analysis of gas content, gas capacity, and gas composition, this article discusses how geologic, structural, and hydrological factors determine the heterogeneous distribution of gas in the Weibei coalbed methane (CBM) field.

The coal rank of the Pennsylvanian no. 5 coal seam is mainly low-volatile bituminous and semianthracite. The total gas content is 2.69 to 16.15 m3/t (95.00–570.33 scf/t), and gas saturation is 26.0% to 93.2%. Burial coalification followed by tectonically driven hydrothermal activity controls not only thermal maturity, but also the quality and quantity of thermogenic gas generated from the coal.

Gas composition indicates that the CBM is dry and of dominantly thermogenic origin. The thermogenic gases have been altered by fractionation that may be related to subsurface water movement in the southern part of the study area.

Three gas accumulation models are identified: (1) gas diffusion and long-distance migration of thermogenic gases to no-flow boundaries for sorption and minor conventional trapping, (2) hydrodynamic trapping of gas in structural lows, and (3) gas loss by hydrodynamic flushing. The first two models are applicable for the formation of two CBM enrichment areas in blocks B3 and B4, whereas the last model explains extremely low gas content and gas saturation in block B5. The variable gas content, saturation, and accumulation characteristics are mainly controlled by these gas accumulation models.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/variable-gas-content-saturation-and-accumulation.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Sequence stratigraphy and coal cycles based on accommodation trends were investigated in the coal-bearing Lower Cretaceous Mannville Group in the Lloydminster heavy oil field, eastern Alberta. The study area is in a low accommodation setting on the cratonic margin of the Western Canada sedimentary basin. Geophysical log correlation of coal seams, shoreface facies, and the identification of incised valleys has produced a sequence-stratigraphic framework for petrographic data from 3 cored and 115 geophysical-logged wells. Maceral analysis, telovitrinite reflectance, and fluorescence measurements were taken from a total of 206 samples. Three terrestrial depositional environments were interpreted from the petrographic data: ombrotrophic mire coal, limnotelmatic mire coal, and carbonaceous shale horizons. Accommodation-based coal (wetting- and drying-upward) cycles represent trends in depositional environment shifts, and these cycles were used to investigate the development and preservation of the coal seams across the study area.

The low-accommodation strata are characterized by a high-frequency occurrence of significant surfaces, coal seam splitting, paleosol, and incised-valley development. Three sequence boundary unconformities are identified in only 20 m (66 ft) of strata. Coal cycle correlations illustrate that each coal seam in this study area was not produced by a single peat-accumulation episode but as an amalgamation of a series of depositional events. Complex relations between the Cummings and Lloydminster coal seams are caused by the lateral fragmentation of strata resulting from the removal of sediment by subaerial erosion or periods of nondeposition. Syndepositional faulting of the underlying basement rock changed local accommodation space and increased the complexity of the coal cycle development.

This study represents a low-accommodation example from a spectrum of stratigraphic studies that have been used to establish a terrestrial sequence-stratigraphic model. The frequency of changes in coal seam quality is an important control on methane distribution within coalbed methane reservoirs and resource calculations in coal mining. A depositional model based on the coal cycle correlations, as shown by this study, can provide coal quality prediction for coalbed methane exploration, reservoir completions, and coal mining.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/accommodation-based-coal-cycles-and-significant.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First |1 2 3 4 5 6 7 | Last ››
In-Person Training
Dar Es Salaam Tanzania 06 March, 2017 08 March, 2017 33259 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-ar-sequence-stratigraphy-tanzania-hero-1.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Business and Economics, Engineering, Clastics, Carbonates, Reserve Estimation, Reservoir Characterization, Production, Bitumen/Heavy Oil, Coalbed Methane, Stratigraphic Traps, Subsalt Traps
 
Dar Es Salaam, Tanzania
6-8 March 2017

The paradigm of sequence stratigraphy has entered a new phase and these once revolutionary concepts are now applied in pre-drill exploration at ever-increasing resolution. The concepts also prove useful in production geology, especially in enhanced oil recovery efforts in previously abandoned fields.

Windhoek Namibia 10 April, 2017 12 April, 2017 33241 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-ar-sequence-stratigraphy-a-predictive-tool-for-e-p-industry-hero-1.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Production, Reservoir Characterization, Sedimentology and Stratigraphy, Carbonates, Clastics, Coalbed Methane, Bitumen/Heavy Oil, Subsalt Traps, Stratigraphic Traps, Business and Economics, Reserve Estimation
 
Windhoek, Namibia
10-12 April 2017

The paradigm of sequence stratigraphy has entered a new phase and these once revolutionary concepts are now applied in pre-drill exploration at ever-increasing resolution. The concepts also prove useful in production geology, especially in enhanced oil recovery efforts in previously abandoned fields.

Kampala Uganda 29 May, 2017 31 May, 2017 33266 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-ar-sequence-stratigraphy-uganda-hero-1.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Business and Economics, Engineering, Clastics, Carbonates, Reserve Estimation, Reservoir Characterization, Production, Bitumen/Heavy Oil, Coalbed Methane, Stratigraphic Traps, Subsalt Traps
 
Kampala, Uganda
29-31 May 2017

The paradigm of sequence stratigraphy has entered a new phase and these once revolutionary concepts are now applied in pre-drill exploration at ever-increasing resolution. The concepts also prove useful in production geology, especially in enhanced oil recovery efforts in previously abandoned fields.

Online Training
29 October, 2009 29 October, 2009 1445 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-application-of-thermal-maturation.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
29 October 2009

Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.

01 January, 2013 01 January, 9999 1473 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-unconventional-resources.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
1 January 2013 - 1 January 9999

Unconventional Resources is an online course that enables participants to learn about shale gas, shale oil and coalbed methane.

Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Committee