Oil Prices Rise as Islamists Rebels Take Over Syria - 09 December, 2024 07:30 AM
Under Trump, an 'All of the Above' Energy Policy is Poised for a Comeback - 09 December, 2024 07:30 AM
Petrobras, Ecopetrol Confirm Colombia’s Largest Gas Discovery - 09 December, 2024 07:30 AM
Kuwait’s Oil Firm Looks to Boost Indonesia Offshore Exploration - 09 December, 2024 07:30 AM
China-Africa Think Tank Forum Highlights Alliance for Key Oil and Gas Projects - 09 December, 2024 07:30 AM
Join us in Buenos Aires, Argentina 11-12 May for Extending Mature Fields' Life Cycles: The Role of New Technologies and Integrated Strategies, a Geosciences Technology Workshop organized in partnership with the Asociación Argentina de Geólogos y Geofísicos (AAGGP).
With technical sessions designed to have cross-discipline appeal across the industry, Buford Pollett, chairman of the AAPG technical subcommittee for OTC, said this year’s topics were specifically chosen to attract a broad spectrum of professionals.
Online registration is now open for the AAPG Annual Convention and Exhibition, which will be held May 31-June 3 in Denver at the Colorado Convention Center. And those who register by April 6 can save up to $210 on their registration fees. Student fees and one-day pass payments also are available.
Equipping you to be a world-class geoscientist is our goal here at AAPG. It’s why we exist as a scientific and professional association: To assist you throughout your career to stay at the top of your game.
The call for abstracts deadline is Jan. 15 for the next AAPG International Conference and Exhibition – a meeting that will be historic on many levels. This year’s ICE will be held Sept. 13-16 in Melbourne, Australia – the first time AAPG has used that city as a setting for ICE.
According to Juan Carlos Soldo, who just recently led the successful IX Hydrocarbon Exploration and Development Congress in Mendoza, Argentina, “Unconventionals really aren't so unconventional anymore.”
The call for abstracts is open for the next AAPG International Conference and Exhibition – a meeting that will be historic on many levels. The 2015 ICE will be held Sept. 13-16 in the beautiful city of Melbourne, Australia– the first time ever AAPG has used that city as a setting for ICE. The meeting will be hosted by the Petroleum Exploration Society of Australia.
The idea of using lasers for drilling into the earth has long been to the oil and gas industry what flying cars and hoverboards are to the general public – the stuff of science fiction and futuristic fantasy. As 2015 fast approaches (contrary to what we were promised in the “Back to the Future” movies) we haven’t quite cracked the code yet on flying cars and hoverboards, but there might be a consolation prize in the works: Laser drilling may actually become a reality.
What’s new in downhole geology, you ask? According to the advertising and press releases that are sent throughout the media, there’s a lot that’s new – more, in fact, than we could ever cover. But since this is our annual Downhole Geology issue, we thought we’d take a look at some of the latest advancements in drilling, well-logging and other downhole innovations rolled out in recent months by a few industry heavy-hitters.
Pumps & Pipes brings together the newest technologies from the oil and gas, medical and aerospace professions in Houston to talk about something they all have in common: Problems. More specifically, members talk about problems because someone else in the room – from a completely different discipline and expertise – may already have found an effective solution.
Join us for AAPG Orphan, Abandoned, Idle and Marginal Wells Conference 2025. This workshop will focus on orphan, abandoned, idle, and marginal wells and the business opportunities and technology associated with plugging and repurposing wells, reducing methane emissions, protecting water supplies, and extending the lives of marginal wells.
Everyone in Houston lives within a few miles of a bayou. Some people think of them as permanent, but the bayous are constantly changing, especially during high water events like Hurricane Harvey. This trip is a 2.5 mile walk down a section of Buffalo Bayou where we will look at the archives of past storms and discuss what to do for future storms.
This introduction to methane monitoring, measurement, and quantification is for all those who would like to understand the requirements and regulations regarding methane emissions and to be able to design a measurement and monitoring solution, complete with the appropriate types of technologies, techniques, and safety protocols.
The course will review core data, petrophysical comparisons, rock physics modeling (including pseudo logs and mechanical properties).
Join us for 'Pivoting 2021: Energy Industry Supply Chains'. Panelists will discuss some of the most prominent advances in supply chain practice, including provenance, authenticity assurance, blockchain, automation, multiple sourcing, and 3D printing. Webinar will be presented via Zoom 7pm - 8:30pm CDT, 14 April 2021.
This course is ideal for individuals involved in Midland Basin exploration and development. Successful development of Wolfcamp shale oil relies on complex inter-relationships (ultimately interdependencies) within and between a wide variety of scientific disciplines, financial entities, and company partnerships.
Learn to critically evaluate current issues that can impact growth and sustainability of oil and gas ventures.
This e-symposium introduces you to the practical benefits of thermal profiling for a variety of unconventional oil and gas projects, including tight gas sands, oil shale, low-gravity oil.
This e-symposium covers how to conduct an interdisciplinary evaluation of mature fields to determine the best approach to recover remaining reserves.
This presentation is designed for exploration/production geologists and geological managers or reservoir engineers.
This 2024 energy sector outlook will feature three discussions led by industry experts. Join us for a webinar where industry experts will discuss annual forecasts of global upstream markets, well quality and activite levels, and why US oil output may be more favorable than current reports suggest.
Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.
Join us for 'Pivoting 2021: Imaging Technologies'. Panelists will discuss new ways to acquire data that is then processed into interpretable images, and they will discuss the technologies as well as the techniques. Webinar will be presented via Zoom 7pm - 8:30pm CDT, 26 May 2021.
As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.
Request a visit from Tao Sun!
Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.
Request a visit from Ameed Ghori!
Three-dimensional (3D) seismic-reflection surveys provide one of the most important data types for understanding subsurface depositional systems. Quantitative analysis is commonly restricted to geophysical interpretation of elastic properties of rocks in the subsurface. Wide availability of 3D seismic-reflection data and integration provide opportunities for quantitative analysis of subsurface stratigraphic sequences. Here, we integrate traditional seismic-stratigraphic interpretation with quantitative geomorphologic analysis and numerical modeling to explore new insights into submarine-channel evolution.
Request a visit from Jacob Covault!
President Biden has laid out a bold and ambitious goal of achieving net-zero carbon emissions in the United States by 2050. The pathway to that target includes cutting total greenhouse gas emissions in half by 2030 and eliminating them entirely from the nation’s electricity sector by 2035. The Office of Fossil Energy and Carbon Management will play an important role in the transition to net-zero carbon emissions by reducing the environmental impacts of fossil energy production and use – and helping decarbonize other hard-to abate sectors.
Request a visit from Jennifer Wilcox!
The carbonate sequences that were deposited in the now exhumed Tethyan Ocean influence many aspects of our lives today, either by supplying the energy that warms our homes and the fuel that powers our cars or providing the stunning landscapes for both winter and summer vacations. They also represent some of the most intensely studied rock formations in the world and have provided geoscientists with a fascinating insight into the turbulent nature of 250 Million years of Earth’s history. By combining studies from the full range of geoscience disciplines this presentation will trace the development of these carbonate sequences from their initial formation on the margins of large ancient continental masses to their present day locations in and around the Greater Mediterranean and Near East region. The first order control on growth patterns and carbonate platform development by the regional plate-tectonic setting, underlying basin architecture and fluctuations in sea level will be illustrated. The organisms that contribute to sequence development will be revealed to be treasure troves of forensic information. Finally, these rock sequences will be shown to contain all the ingredients necessary to form and retain hydrocarbons and the manner in which major post-depositional tectonic events led to the formation of some of the largest hydrocarbon accumulations in the world will be demonstrated.
Request a visit from Keith Gerdes!
Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.
Request a visit from Kurt W. Rudolph!
Engineering of wind farms, development of carbon sequestration projects in shelfal waters, the proliferation of communication cables that connect the world, all of these things suggest that it is time to re-examine what we know about shelf processes both updip-to-downdip and along shoreline, and the influence of shelf processes on erosion and transport of sediments.
Request a visit from Lesli Wood!
In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.
Request a visit from Juan I. Soto!
While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.
Physics is an essential component of geophysics but there is much that physics cannot know or address.
Request a visit from John Castagna!
Ticks and clicks 638693412129101640