HomeScience Play Types Shale Gas

Shale Gas

Explorer Director’s Corner

Geoscientists play a lot of different roles in our industry, but foremost, we are technical and scientific experts. We understand the rocks, their depositional history and their potential to generate hydrocarbons.

American Association of Petroleum Geologists (AAPG)
Explorer President’s Column

Six months have passed since I started writing and speaking on sustainable development. While writing this column at the end of the year for publication in the January EXPLORER to start the new year, it seems appropriate to take a closer look at sustainable development and petroleum basins from both past and future perspectives.

American Association of Petroleum Geologists (AAPG)
Explorer Article

The Energy Minerals Division celebrated its 25th Anniversary in 2002. The Division emphasized to the AAPG membership that it was AAPG’s center of activity on energy minerals and unconventional energy resources. EMD originally focused primarily on coal, uranium, geothermal energy, oil shales and tar sands. However, its focus expanded and in 2002, EMD’s most active unconventional resource areas were coalbed methane, gas hydrates, and unconventional energy economics.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Foundation Update

AAPG’s historic Distinguished Lecture program has undergone a revolutionary transformation aimed at extending the program’s accessibility, audience and reach.

American Association of Petroleum Geologists (AAPG)
Explorer Geophysical Corner

Generally, the fine-grained shale rocks are found to be composed of 50 to 70 percent clay, anywhere between 25 to 40 percent silt- and clay-sized quartz, and 5 percent of minerals including feldspars and carbonates, comprising the total rock volume. A variety of techniques such as X-ray diffraction, infrared spectroscopy and electron microscopy are available, which help us understand the type of clay minerals present in a shale sample.

American Association of Petroleum Geologists (AAPG)
Explorer Article

In 2017, AAPG celebrated the 100th anniversary of its founding in Tulsa, Okla. This same year was also the 40th anniversary of the establishment the AAPG Energy Minerals Division. The EMD has evolved as an organization over the past 40 years to reflect the changes in the mix of resources fueling the world’s ever-increasing energy demand.

American Association of Petroleum Geologists (AAPG)
Middle East Blog

AAPG, EAGE and the Technical Program Committee for the Shale Gas Evolution Symposium are pleased to invite you to submit a poster abstract for the upcoming event which is being held Under the Patronage of His Excellency Shaikh Mohammed Bin Khalifa Al-Khalifa, Minister of Oil, Kingdom of Bahrain, AAPG.

American Association of Petroleum Geologists (AAPG)
Explorer Division Column EMD

I am pleased to serve as president of the Energy Minerals Division for 2018-19. My main goals for this year are to provide frequent, easily accessible, relevant, high-quality technical content, and to improve our member engagement and communication with the regions, local societies and other geological associations.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

If a taint exists on the use of geophysics to evaluate fracturing operations, it is this: ‘T ain’t easy. In fact it’s downright difficult, said Arash Dahi Taleghani, associate professor of petroleum and natural gas engineering in the Department of Energy and Mineral Engineering at Penn State University, whose research areas include studying how natural fractures can affect hydraulic-fracture geometry and using seismic for modeling natural fractures and post-treatment fracture analysis.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Director’s Corner

All eyes were glued on Vienna last month as OPEC gathered to assess oil market conditions and set production targets for its member countries to ensure adequate supplies, but also to support oil prices.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 23 June 2020, 2:00 p.m.–3:00 p.m.

Visiting Geoscientist Mauricio Guizada provides an overview of general structural geology of the Andes, with a focus on the Central Andes. His talk covers topics related to onshore exploration, G&G methods in exploration and risk analysis. Join Mauricio Guizada via Zoom on June 23 at 4pm CDT.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 4 June 2020, 3:00 p.m.–4:00 p.m.

Salt welds form due to salt thinning by mechanical (e.g., salt-flow) and/or chemical (e.g., salt-dissolution) processes. This webinar explores how we use 3-D seismic reflection, borehole, and biostratigraphic data to constrain the thickness and composition of salt welds, and to test the predictions of analytical models for salt welding.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 19 March 2015, 2:00 p.m.–3:00 p.m.

A detailed biostratigraphic analysis and stratigraphic framework of the Paleocene and Eocene Chicontepec Formation in the Tampico-Misantla basin, onshore eastern Mexico, was conducted using 33 wells.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 9 February 2012, 12:00 a.m.–12:00 a.m.

Projects in several shales will be discussed, including Marcellus, Eagle Ford, Haynesville, Fayetteville, Montney, and Barnett, as will several seismically-detectable drivers for success including lithofacies, stress, pre-existing fractures, and pore pressure.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)

Committee

Related Interests

See Also ...