HomeScience Play Types

Play Types

Explorer President’s Column

I received my 40-year certificate from AAPG. At the bottom it reads, “In Recognition and Appreciation of your Loyalty to AAPG,” but it is I who should be thanking AAPG for allowing me to be part of this great organization. AAPG allowed me to network and make contacts with smarter people than me and to learn and expand my knowledge base. This is a great profession, and I have found a career in the geological sciences to be extremely rewarding.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Division Column EMD

Buckminster Fuller, the American designer, inventor and visionary said, “We are called to be architects of the future, not its victims.” In the Energy Minerals Division of the AAPG, we hear that calling and embrace it. In our 2019-20 fiscal year, we welcome the return of longtime leaders as well as an influx of new ones to our design team.

American Association of Petroleum Geologists (AAPG)
Explorer Director’s Corner

Producers are feeling the pinch: they’ve got to drill ever more wells to stay ahead of their production declines. Increased production is weighing on crude oil prices – you get the benefit of this supply in resilient markets, but it is shrinking margins and available cashflow to fund this drilling. And at the same time, the financial community is pulling back, restricting access to capital. The industry is reshaping itself yet again in response to new market realities, looking for new ideas and better approaches and operating models.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Collaboration. Scott Singleton, geophysical technology adviser at Independence Resources Management in Houston, wants to underscore that one word. He believes that if there’s a single ingredient to success in unconventional fields – and the one concept from which those in unconventionals have unfortunately moved away – it’s that geologists, geophysicists and engineers have to work together for the benefit of everyone.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The two most compelling words in the Middle East oil industry today might be “natural gas.” And there are other, increasingly important word pairs not usually associated with the Middle East oil industry, like “unconventional resources” and “renewable energy.”

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Digital transformation is taking place in oilfields all around the globe, but the Middle East is pursuing it most aggressively. It is estimated that Middle Eastern oil companies have more than doubled their investments in digital technology over the last four years, said Vivek Chidambaram, managing director of Accenture Strategy, a multinational consulting company.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Some of the world’s largest oil companies have pumped up their shale investments recently, targeting increased future production from shale oil plays. At the same time, some independents have been cutting back on shale spending, in part because of lower oil and gas prices and shareholder demands for improved returns. The result is a not-so-subtle shift toward shale dominance by Big Oil.

American Association of Petroleum Geologists (AAPG)
Explorer Geophysical Corner

Seismic data are usually contaminated with two common types of noise, namely random and coherence. Such noise, if not tackled appropriately, prevents their accurate imaging. Small-scale geologic features such as thin channels, or subtle faults, etc. might not be seen clearly in the presence of noise. Similarly, seismic attributes generated on noise-contaminated data are seen as compromised on their quality, and hence their interpretation. Noise reduction techniques have been developed for poststack and prestack seismic data and are implemented wherever appropriate for enhancing the signal-to-noise ratio and achieving the goals set for reservoir characterization exercises.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Historical Highlights

From high-altitude, windswept prairies in southwestern Wyoming, the span of the powerful Wind River and Wyoming Ranges can be seen in the distance. This is home to the Pinedale Anticline Project and the Jonah Field, located in Sublette County, Wyo. In 2000, this was the site of one of the most productive gas fields in the continental United States. Gas reserves were estimated at up to 40 trillion cubic feet. That was enough to serve the nation’s entire natural gas demand for 22 months.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Over the past 10 years, tight oil boosted the United States back to world prominence in crude oil production. Today’s projections tie future U.S. production levels to continued strength in tight oil output, especially from the Permian Basin. Considering the importance of unconventional oil plays in the overall U.S. production picture, it’s useful to examine the outlook for tight oil. And in the Permian Basin, that outlook isn’t as bright as previously thought.

Show more
American Association of Petroleum Geologists (AAPG)
Short Course
Sunday, 25 September 2022, 8:30 a.m.–9:30 a.m.

Date: 25 September 2022 Time: 8:30am - 4:30pm Course Instructor: Alberto Ortiz, Net Zero Carbon Solutions Registration Fee: $530 Registration Deadline: 25 August 2022 Short Course registration is included as part of the GTW registration process. The petrophysical characterization of unconventional shale-type reservoirs has been one of the most approached and relevant issues in the oil and gas industry in the last 8 years. This is because after several years, the operating companies comprehended the impact that an appropriate characterization of the reservoir has on their project economics. Another reason for this were the technical obstacles encountered in the measurement of petrophysical properties such as porosity, saturation and permeability due to the complexity of this type of reservoir. Obstacles and limitations not only relate to laboratory measurements but also to electrical logging tools. As a consequence of this, nowadays, petrophysical evaluations in this type of reservoir do not have standardized workflows established and accepted worldwide as is the case for conventional reservoirs. This motivates the professionals involved in the study of this type of rocks to dedicate a lot of effort in the validation of the technologies used, and sometimes it is difficult for them to understand the results, the evaluation of uncertainties and the construction of petrophysical models with results and representative parameters of the subsurface conditions. This course will focus on providing key knowledge for a better characterization of the rock both in the aspects related to the matrix represented by mineralogy and kerogen as well as the fluids present. The approach will be based on the convergence of different technologies that support and give robustness to the results. The contents that will be provided will include laboratory testing techniques and petrophysical evaluation of electrical well logs for unconventional shale-type reservoirs. The contents provided will cover a variety of studies based on the most diverse physical principles that will include the latest advances and techniques used in the industry such as Nuclear Magnetic Resonance, Spectroscopy, Dielectric, Computed axial tomography and SEM images, among others. As a result of this, attendees will have tools that allow a more comprehensive understanding of this type of rocks, a better assessment of the uncertainty of the model used and the necessary steps to improve its precision, accelerating the learning curve. The contents provided will also allow knowing the critical parameters that must be taken into account for the definition of areas to be drilled. Course Topics Reservoir heterogeneity characterization from outcrops to lab data and electrical logging. Most relevant unconventional plays of the world. Main characteristics. The petrophysical model. Components and definitions, construction, uncertainties, strengths and weakness. Lab studies: porosity, saturation, mineralogy, organic geochemistry and permeability. Electrical logging response on unconventional shale plays: triple combo, NMR, NMR T1T2, nuclear spectroscopy, spectral GR, dielectric. The effect of maturity on kerogen. Challenges on water saturation calculation. Data integration. Interpretation workflows and core calibration.

Show more
American Association of Petroleum Geologists (AAPG)
Workshop
Naples, Italy
Wednesday, 22 June Thursday, 23 June 2022, 8:00 a.m.–5:00 p.m.

Modelling carbonate sequences and reservoirs has always been a challenging task. Carbonate rocks are generated and subsequently modified by a large variety of biological, physical and chemical processes that start at the time of deposition and end today. To unravel the geological evolution and history of carbonate sequences is fundamental not only for understanding their hydrocarbons potential but also for their role as potential reservoirs for renewable energy (geothermal) or geological gas storage (CO2 and hydrogen). Several science disciplines are often involved to fully understand the characteristics of carbonate rocks and old approaches and new technologies and tools are nowadays applied in these types of sequences. The objective of this meeting is to allow scientists and engineers working on carbonate rocks in academia and industry to share their most recent experience, work, approaches and use of innovative technologies to increase the understanding of the very complex world of carbonates.

Show more
American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Tuesday, 2 December 2014, 2:00 p.m.–3:00 p.m.

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 16 February 2012, 12:00 a.m.–12:00 a.m.

This presentation describes a proven workflow that uses a standard narrow azimuth 3D seismic, conventional logs, image logs and core data to build five key reservoir properties required for an optimal development of shale plays.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 19 May 2011, 12:00 a.m.–12:00 a.m.

This e-symposium presents and discusses the results of laboratory tests and research relating to determining shale prospectivity in general, and specifically in the Black Warrior Basin, Alabama.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 25 March 2010, 12:00 a.m.–12:00 a.m.

The presentation describes a well established fracture modeling workflow that uses a standard 3D seismic, conventional logs, image logs and data from one core to build predictive 3D fracture models that are validated with blind wells.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 30 October 2014, 10:00 a.m.–11:00 a.m.

Cross disciplinary workflows play an important part of successful characterization of shale reservoirs. This course discusses how the artificial kerogen maturity of organic-rich Green River shale affects the petrophysical, micro-structural, geochemical and elastic properties.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 20 August 2009, 12:00 a.m.–12:00 a.m.

This e-symposium covers advances in geothermal energy, integration with petroleum operations, and lessons learned in recent cases.

American Association of Petroleum Geologists (AAPG)
Online Certificate Course
Tuesday, 1 January 2013, 12:00 a.m.–1:00 a.m.

Unconventional Resources is an online course that enables participants to learn about shale gas, shale oil and coalbed methane.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
VG Abstract

In 1991, Gulf Indonesia and its partners discovered South Sumatra Basin’s first major gas field at Dayung in the Corridor PSC. A key feature of this field is that most of the reserves are held within fractured basement rocks of pre-Tertiary age. 

Request a visit from Charles Caughey!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...