Oil Prices Rise as Islamists Rebels Take Over Syria - 09 December, 2024 07:30 AM
Under Trump, an 'All of the Above' Energy Policy is Poised for a Comeback - 09 December, 2024 07:30 AM
Petrobras, Ecopetrol Confirm Colombia’s Largest Gas Discovery - 09 December, 2024 07:30 AM
Kuwait’s Oil Firm Looks to Boost Indonesia Offshore Exploration - 09 December, 2024 07:30 AM
China-Africa Think Tank Forum Highlights Alliance for Key Oil and Gas Projects - 09 December, 2024 07:30 AM
An ongoing aggressive and focused effort to provide AAPG’s popular Distinguished Lecture program to all parts of the planet is taking a giant step forward this year.
Technology for measuring rock properties downhole, especially in carbonate formations, becomes more sophisticated each year – including right now.
More, more, more: New downhole technology is proving its worth in the Los Angeles Basin by squeezing new oil out of an old field.
Coming of age: Borehole imaging technology, which started its evolvement from dip-meter technology in the 1980s, has advanced to become an increasingly effective tool.
Drink up: Resource plays have uncorked an abundance of new opportunities, and almost all of them demand geologists be familiar with the “Sideways” approach. (Hint: Here a lateral move isn’t a bad thing.)
Student Chapter awards and awards for student technical presentations given at the AAPG Annual Convention and Exhibition in San Antonio have been announced by the Convention Organizing and Student Chapters committees.
One of the largest core workshops ever to focus on a single depositional environment will be offered in Cape Town.
A story to be shared: U.S. geologists may know all about the Fayetteville Shale, but the innovations that have helped bring success there are getting a global spotlight.
Indonesia's under-explored deepwater basins could breathe new production life into a declining player.
An important deadline is coming fast for those who will be attending this year’s AAPG International Conference and Exhibition (ICE) in Cape Town, South Africa.
Join us for AAPG Orphan, Abandoned, Idle and Marginal Wells Conference 2025. This workshop will focus on orphan, abandoned, idle, and marginal wells and the business opportunities and technology associated with plugging and repurposing wells, reducing methane emissions, protecting water supplies, and extending the lives of marginal wells.
Everyone in Houston lives within a few miles of a bayou. Some people think of them as permanent, but the bayous are constantly changing, especially during high water events like Hurricane Harvey. This trip is a 2.5 mile walk down a section of Buffalo Bayou where we will look at the archives of past storms and discuss what to do for future storms.
This introduction to methane monitoring, measurement, and quantification is for all those who would like to understand the requirements and regulations regarding methane emissions and to be able to design a measurement and monitoring solution, complete with the appropriate types of technologies, techniques, and safety protocols.
Subsurface risk and uncertainty are recognized as very important considerations in petroleum geoscience. And even when volume estimates are relatively accurate, the reservoir characteristics that determine well placement and performance can remain highly uncertain. In analyzing results and work practices, three aspects of uncertainty are reviewed here.
Request a visit from Kurt W. Rudolph!
Around 170 million years ago, the Gulf of Mexico basin flooded catastrophically, and the pre-existing landscape, which had been a very rugged, arid, semi-desert world, was drowned beneath an inland sea of salt water. The drowned landscape was then buried under kilometers of salt, perfectly preserving the older topography. Now, with high-quality 3D seismic data, the salt appears as a transparent layer, and the details of the drowned world can be seen in exquisite detail, providing a unique snapshot of the world on the eve of the flooding event. We can map out hills and valleys, and a system of river gullies and a large, meandering river system. These rivers in turn fed into a deep central lake, whose surface was about 750m below global sea level. This new knowledge also reveals how the Louann Salt was deposited. In contrast to published models, the salt was deposited in a deep water, hypersaline sea. We can estimate the rate of deposition, and it was very fast; we believe that the entire thickness of several kilometers of salt was laid down in a few tens of thousands of years, making it possibly the fastest sustained deposition seen so far in the geological record.
Request a visit from Frank Peel!
President Biden has laid out a bold and ambitious goal of achieving net-zero carbon emissions in the United States by 2050. The pathway to that target includes cutting total greenhouse gas emissions in half by 2030 and eliminating them entirely from the nation’s electricity sector by 2035. The Office of Fossil Energy and Carbon Management will play an important role in the transition to net-zero carbon emissions by reducing the environmental impacts of fossil energy production and use – and helping decarbonize other hard-to abate sectors.
Request a visit from Jennifer Wilcox!
Engineering of wind farms, development of carbon sequestration projects in shelfal waters, the proliferation of communication cables that connect the world, all of these things suggest that it is time to re-examine what we know about shelf processes both updip-to-downdip and along shoreline, and the influence of shelf processes on erosion and transport of sediments.
Request a visit from Lesli Wood!
The carbonate sequences that were deposited in the now exhumed Tethyan Ocean influence many aspects of our lives today, either by supplying the energy that warms our homes and the fuel that powers our cars or providing the stunning landscapes for both winter and summer vacations. They also represent some of the most intensely studied rock formations in the world and have provided geoscientists with a fascinating insight into the turbulent nature of 250 Million years of Earth’s history. By combining studies from the full range of geoscience disciplines this presentation will trace the development of these carbonate sequences from their initial formation on the margins of large ancient continental masses to their present day locations in and around the Greater Mediterranean and Near East region. The first order control on growth patterns and carbonate platform development by the regional plate-tectonic setting, underlying basin architecture and fluctuations in sea level will be illustrated. The organisms that contribute to sequence development will be revealed to be treasure troves of forensic information. Finally, these rock sequences will be shown to contain all the ingredients necessary to form and retain hydrocarbons and the manner in which major post-depositional tectonic events led to the formation of some of the largest hydrocarbon accumulations in the world will be demonstrated.
Request a visit from Keith Gerdes!
As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.
Request a visit from Tao Sun!
Climate change is not only happening in the atmosphere but also in the anthroposphere; in some ways the former could drive or exacerbate the latter, with extreme weather excursions and extreme excursions from societal norms occurring all over the earth. Accomplishing geoscience for a common goal – whether that is for successful business activities, resource assessment for public planning, mitigating the impacts of geological hazards, or for the sheer love of furthering knowledge and understanding – can and should be done by a workforce that is equitably developed and supported. Difficulty arises when the value of institutional programs to increase equity and diversity is not realized.
Request a visit from Sherilyn Williams-Stroud!
The Energy sector is a changing business environment. Throughout the 20th century fluctuations of oil supply and demand produced changes in the barrel price that pushed the growth or shrinkage of the industry. In this 21st century, new challenges such as diversification of the energy mix, boosting gas demand, require the exploration of critical minerals and development of new technologies as well.
Request a visit from Fernanda Raggio!
Local sea-level changes are not simply a function of global ocean volumes but also the interactions between the solid Earth, the Earth’s gravitational field and the loading and unloading of ice sheets. Contrasting behaviors between Antarctica and Scotland highlight how important the geologic structure beneath the former ice sheets is in determining the interactions between ice sheets and relative sea levels.
Request a visit from Alex Simms!
For well over a century there have been conflicting indications of the strength of the crust and of faults and what controls them. Much of our ignorance comes quite naturally from the general inaccessibility of the crust to measurement--in contrast with our understanding of the atmosphere, which is much more accessible to observation as well as more rapidly changing. Crustal strength is best understood in deforming sedimentary basins where the petroleum industry has made great contributions, particularly in deforming petroleum basins because of the practical need to predict. In this talk we take a broad look at key issues in crustal strength and deformation and what we can learn from boreholes, earthquakes, active fault systems, and toy models.
Request a visit from John Suppe!
Ticks and clicks 638693407003320029