'We Are Not in the Business of Ice Cream': Big Oil CEOs Defend Against Climate Criticism - 02 October, 2023 07:30 AM
How One Contrarian Company Thrives in a Shale Oil and Gas World - 02 October, 2023 07:30 AM
“A Setup for Disaster”: California Legislation Requiring Companies to Pay for Oil and Gas Well Cleanup in Limbo - 02 October, 2023 07:30 AM
Utah is Ramping Up Geothermal, Using Oil and Gas Tech - 02 October, 2023 07:30 AM
Chinese Underwater Explorer Dives Deep in Hunt for Oil and Gas - 02 October, 2023 07:30 AM
Siliciclastic Reservoirs of the Middle East Call for Posters Expires in 10 days
litutmMedium
litutmCampaign
4th Edition: Stratigraphic Traps of the Middle East Call for Posters Expires in 125 days
2nd Edition: Geological Process-Based Forward Modeling AAPG Call For Abstracts Expires in 210 days
The potential of Wyoming's Niobrara shale play will be in the spotlight during this year's AAPG Rocky Mountain Section meeting, set June 25-29 in Cheyenne, Wyo.
Oil and liquids-rich gas deposits are hot targets today among prospectors and operators – and the action in the self-sourced Niobrara shale play in the Rocky Mountain region is about as fired up as it can be.
The Middle Devonian Marcellus Shale has become one doozy of a gas play. In fact, it’s one of the premier shale gas plays of North America in terms of total gas resource, extent, production rates and economic potential, according to AAPG member Bill Zagorski, vice president of geology for the Southpointe, Pa., Marcellus shale division at Range Resources, which pioneered the play.
In the mid-continent Mississippi Lime, it’s the same song and a totally new verse – with a challenging geological chorus.
The first Geosciences Technology Workshop ever held in the Middle East Region proved to be an enormous success and a remarkable accomplishment for the geosciences community in the area.
A collaboration between PESA and AAPG resulted in a two-day core workshop being run in Perth, West Australia, on the Giant Fields of the North West Shelf, Australia.
While shale gas producers continue to tout their production prowess, a few voices are starting to question the underlying economics of shale gas development.
The Arkoma Basin has long been a popular drilling focus for the industry. As the saying goes, everything “old” is new again – and the Arkoma is no exception.
A delicate balance: Some see beautiful vistas, abundant wildlife, a recreational paradise. Others see a promising geologic structure and a beautiful energy potential. What’s next for the Pinedale field?
What’s cooking? A new memoir provides a recipe for borehole imaging success.
In order to support the energy transition, optimizing exploration and production from complex stratigraphic-diagenetic conventional and unconventional plays remains highly important. At the same time, Carbon Capture and Storage (CCS) poses new technological challenges that will impact both the industry and academia for decades to come. This 2nd edition will present reviews and discuss technology developments in geological process-based forward modeling achieved during the last 2 years. New perspectives for future technology developments and implementation in industry workflows will be discussed and with the additional focus on CO₂ storage and other sustainability-related applications, the scope of the workshop will be considerably extended.
AAPG and EAGE have teamed up to deliver the upcoming New Discoveries in Mature Basins workshop to be held from 30-31 January, 2024 in Kuala Lumpur, Malaysia. Save the date! Registration to open soon.
The fifth annual AAPG Siliciclastic Reservoirs of the Middle East Workshop will take place in Al Khobar in Saudi Arabia from 4-6 December 2023. This workshop will bring together professionals from the region to share their knowledge and experience related to siliciclastic reservoirs and showcase the best success stories in the industry on understanding and utilizing oil and gas siliciclastic reservoirs in the region.
Join us for the 4th Edition of: "Stratigraphic Traps of the Middle East" workshop. The workshop will be hosted by AAPG in Al Khobar, Saudi Arabia 4-6 March 2024.
Plan now to attend an interactive in-person workshop with industry leaders, government representatives and technical experts working in the Guyana-Suriname Basin.
Three-dimensional (3D) seismic-reflection surveys provide one of the most important data types for understanding subsurface depositional systems. Quantitative analysis is commonly restricted to geophysical interpretation of elastic properties of rocks in the subsurface. Wide availability of 3D seismic-reflection data and integration provide opportunities for quantitative analysis of subsurface stratigraphic sequences. Here, we integrate traditional seismic-stratigraphic interpretation with quantitative geomorphologic analysis and numerical modeling to explore new insights into submarine-channel evolution.
Request a visit from Jacob Covault!
As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.
Request a visit from Tao Sun!
Local sea-level changes are not simply a function of global ocean volumes but also the interactions between the solid Earth, the Earth’s gravitational field and the loading and unloading of ice sheets. Contrasting behaviors between Antarctica and Scotland highlight how important the geologic structure beneath the former ice sheets is in determining the interactions between ice sheets and relative sea levels.
Request a visit from Alex Simms!
Around 170 million years ago, the Gulf of Mexico basin flooded catastrophically, and the pre-existing landscape, which had been a very rugged, arid, semi-desert world, was drowned beneath an inland sea of salt water. The drowned landscape was then buried under kilometers of salt, perfectly preserving the older topography. Now, with high-quality 3D seismic data, the salt appears as a transparent layer, and the details of the drowned world can be seen in exquisite detail, providing a unique snapshot of the world on the eve of the flooding event. We can map out hills and valleys, and a system of river gullies and a large, meandering river system. These rivers in turn fed into a deep central lake, whose surface was about 750m below global sea level. This new knowledge also reveals how the Louann Salt was deposited. In contrast to published models, the salt was deposited in a deep water, hypersaline sea. We can estimate the rate of deposition, and it was very fast; we believe that the entire thickness of several kilometers of salt was laid down in a few tens of thousands of years, making it possibly the fastest sustained deposition seen so far in the geological record.
Request a visit from Frank Peel!
For well over a century there have been conflicting indications of the strength of the crust and of faults and what controls them. Much of our ignorance comes quite naturally from the general inaccessibility of the crust to measurement--in contrast with our understanding of the atmosphere, which is much more accessible to observation as well as more rapidly changing. Crustal strength is best understood in deforming sedimentary basins where the petroleum industry has made great contributions, particularly in deforming petroleum basins because of the practical need to predict. In this talk we take a broad look at key issues in crustal strength and deformation and what we can learn from boreholes, earthquakes, active fault systems, and toy models.
Request a visit from John Suppe!
The Betic hinterland, in the westernmost Mediterranean, constitutes a unique example of a stack of metamorphic units. Using a three-dimensional model for the crustal structure of the Betics-Rif area this talk will address the role of crustal flow simultaneously to upper-crustal low-angle faulting in the origin and evolution of the topography.
Request a visit from Juan I. Soto!
While there are many habitats that are associated with the deposition of organic-rich marine and lacustrine source rocks, one important pathway is linked to the onset of increased basin subsidence associated with major tectonic events. A key aspect is that this subsidence is spatially variable, with the uplift of basin flanks contemporaneous with the foundering of the basin center, resulting in a steeper basin profile.
Request a visit from Kurt W. Rudolph!
Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.
Request a visit from Ameed Ghori!
Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.
In comparison with the known boundary conditions that promote salt deformation and flow in sedimentary basins, the processes involved with the mobilization of clay-rich detrital sediments are far less well established. This talk will use seismic examples in different tectonic settings to document the variety of shale geometries that can be formed under brittle and ductile deformations.
Ticks and clicks 638318698853766606