Coming Soon!
Recent Posts
No posts yet.
 

Industry and academia are teaming up to pump up activity in the Mississippian of the Midcontinent United States.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/osu-industry-consortium-eyes-mississippian-2013-03mar-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The central Black Sea Basin of Turkey is filled by more than 9 km (6 mi) of Upper Triassic to Holocene sedimentary and volcanic rocks. The basin has a complex history, having evolved from a rift basin to an arc basin and finally having become a retroarc foreland basin. The Upper Triassic–Lower Jurassic Akgol and Lower Cretaceous Cağlayan Formations have a poor to good hydrocarbon source rock potential, and the middle Eocene Kusuri Formation has a limited hydrocarbon source rock potential. The basin has oil and gas seeps. Many large structures associated with extensional and compressional tectonics, which could be traps for hydrocarbon accumulations, exist.

Fifteen onshore and three offshore exploration wells were drilled in the central Black Sea Basin, but none of them had commercial quantities of hydrocarbons. The assessment of these drilling results suggests that many wells were drilled near the Ekinveren, Erikli, and Ballıfakı thrusts, where structures are complex and oil and gas seeps are common. Many wells were not drilled deep enough to test the potential carbonate and clastic reservoirs of the İnaltı and Cağlayan Formations because these intervals are locally buried by as much as 5 km (3 mi) of sedimentary and volcanic rocks. No wells have tested prospective structures in the north and east where the prospective İnalti and Cağlayan Formations are not as deeply buried. Untested hydrocarbons may exist in this area.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/new-evidences-for-the-formation-turkey.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

It don’t come easy: The oil rich Monterey Shale has proved to be the biggest conventional resource provider in California, and it promises even more – but the formation’s complex geology is just as intimidating as its potential is huge.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/monterey-shale-continues-to-tempt-and-tease-2013-02feb-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

A new well in Oklahoma may be the most historic and geologically interesting project in the entire country – and for a bonus, it may involve a new helium province.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/oklahoma-geologists-are-basement-bound-2012-12dec-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Pesky hydrocarbons just want out: Is the trap half-full or half-empty?

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/bishop-dick.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Coexist – often easier said than done, especially when the exploration industry is attempting to work in highly populated or environmentally sensitive areas. So how does it work in California?
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/technology-solves-california-challenge-2012-04jun-hero.JPG?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

After World War II – possibly as part of the Marshall Plan – Shell was obliged to give an American company a half interest in the acreage it held in Netherlands.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/insistence-proved-unwanted-block-a-winner-208-01jan-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

When it comes to understanding the Marcellus Shale, it’s all about the fractures.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/with-marcellus-its-all-about-the-fractures-2011-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Scientific knowledge about the origins of oil in the Gulf of Mexico Basin and the resulting impact on oil quality has evolved over a long period of time.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/katz-barry.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

A multi-disciplinary team of geoscientists has developed a new framework for the north Red Sea region – and their findings may cause a new reassessment of the area’s resource potential.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/red-sea-an-intriguing-frontier-2011-08aug-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First |1 2 3 4 5 6 7 8 | Last ››
In-Person Training
Houston Texas United States 03 October, 2016 04 October, 2016 30929 Desktop /Portals/0/PackFlashItemImages/WebReady/the-petroleum-geochemistry-toolkit-for-petroleum-exploration-and-development-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geochemistry and Basin Modeling, Petroleum Systems, Source Rock, Sedimentology and Stratigraphy, Carbonates, Oil and Gas Analysis
 
Houston, Texas, United States
3-4 October 2016
This course will provide sufficient background to better understand basic principles of petroleum geochemistry, how best to use geochemistry in their exploration or development study area, determine the limitations of geochemical data/interpretation, and types of samples and analysis required to evaluate a basin, region, play, or well. 
Vilnius Lithuania 24 October, 2016 25 October, 2016 32641 Desktop /Portals/0/PackFlashItemImages/WebReady/er-gtw-gtw-hydrocarbon-exploration-lithuania-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Gas Injection, Tertiary Recovery, Reservoir Characterization, Environmental, Natural Resources, Pollution, Geochemistry and Basin Modeling, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, High Stand Deposits, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, Structure, Tectonics (General), Structural Analysis (Other), Salt Tectonics, Geomechanics and Fracture Analysis, Fold and Thrust Belts, Extensional Systems, Compressional Systems, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Alternative Resources, Gas Hydrates
 
Vilnius, Lithuania
24-25 October 2016

AAPG Europe are excited to announce the first event to be held in the beautiful capital city of Vilnius, Lithuania. This Geosciences Technology Workshop will be based around the main theme "Hydrocarbon Exploration in Lithuania and the Baltic Region" and we expect interests from Latvia, Estonia, Poland and Kaliningrad.

Lithuania 26 October, 2016 26 October, 2016 33520 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-er-core-workshop-lithuanian-geological-society-2016-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Alternative Resources, Gas Hydrates, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Tertiary Recovery, Secondary Recovery, Gas Injection, Water Flooding, Reservoir Characterization, Environmental, Natural Resources, Pollution, Water Resources, Geochemistry and Basin Modeling, Basin Modeling, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, High Stand Deposits, Structure, Fold and Thrust Belts, Extensional Systems, Salt Tectonics, Tectonics (General), Geomechanics and Fracture Analysis, Structural Analysis (Other), Compressional Systems
 
Lithuania
26 October 2016

Join AAPG Europe and the Lithuanian Geological Survey for this exciting Core Workshop. This workshop will follow on from the 'Hydrocarbon Exploration in Lithuania and the Baltic Regions' event taking place at Vilnius University on 24th – 25th October.

The Early Palaeozoic Hydrocarbon System in the Baltic Basin and adjacent territories involves Middle-Late Cambrian, the Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Graptolitic Shales source rocks and the major complexes of reservoirs, associated with Middle Cambrian sandstones, Ordovician and Silurian reefogenic and carbonate build-ups.

The major reservoirs of the Baltic Basin are:

  • The Middle Cambrian (Deimena Fm). Sandstones - Producing
  • The Early Ordovician (Tremadoc, Salantai Fm.) sandstones
  • Late Ordovician (Early Ashgill) organogenic limestones/carbonate buildups
  • Late Silurian (Late Ludlow/Pridoli) reefogenic carbonate build-ups
Core Presentation:
Cores presented from the following 3 reference wells:

1. The Middle Cambrian - the Early Ordovician quartz sandstone reservoirs

The Middle Cambrian Deimena Group sandstones comprises all the major economically important oil fields located Lithuania, Latvia, Kaliningrad district and Polish onshore and Baltic Sea offshore. The other, much less significant, potential reservoirs are the Late Ordovician carbonate build-ups of Gotland (Sweden) and Southern part of Lithuania and the Late Silurian carbonate reefogenic buildups in South Lithuania (Zdanaviciute O., Sakalauskas J. eds., 2001, Zdanaviciute, Lazauskiene 2007; Kanev et al., 1994).

The reference sections would demonstrate core from fine-grained (dominated by 0.25-0.1 mm fraction (30-75%)) quartz sandstones containing thin clay and siltstone interlayers. The sandstones are to a different degree litified by compaction and predominantly cemented by quartz and diagenetic quartz cement that has the major control on reservoir properties.

The Early Ordovician

The early Ordovician Tremadoc age (Pakerort Regional Stage, Salantai Fm.) strata distributed rather locally are a reservoir unit at the base of the Ordovician succession, comprising quartz sandstones and quartz siltstones of only 0.5 to 4 m thick. It overlays directly to the Middle Cambrian Deimena Group sandstones and together form one reservoir unit with similar reservoir properties. The formation is overlain by the Early Ordovician shales. Several small oil fields are producing from this reservoir unit in the western part of Lithuania.


2. The Late Ordovician (Early Ashgill) and Late Silurian (Late Ludlow/Pridoli) organogenic limestone and reefogenic carbonate buildups reservoirs

The Late Ordovician - The Late Silurian

The reservoir rocks within the Silurian succession are the Wenlock - Early Ludlow and Pridolian reefogenic carbonates comprising secondary dolomites and reefal limestones with thicknesses of tens of meters. Silurian sequences are locally distributed along the Eastern slope of the Baltic Basin. The Wenlockian - Early Ludlow strata are up to 28 m thick; the effective porosity ranges from 12% to 17% and average permeabilities – 12-15 mD. The most favourable conditions for the formation of non-structural traps (reef-associated, lithologic-stratigraphic and combined) are associated with the carbonates (mainly stromoporoidal and crinoidal limestones) sucession of about 90 m thick of the late Ludlow- earliest Pridoli (Minija and Ventspils Formations). The reservoir rocks has mean porosities of 6-15 % and up to 26% and permeability ~465mD, reaching up to 2400mD. The Late Silurian reservoir rocks mainly occur in central and southern Lithuania in the central part of the basin.


3. Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Llandovery Black Shales

The Late Ordovician Shales

In the central and eastern part of the Baltic Basin the potential source rocks comprises dark grey and black shales of the Late Ordovician Late Caradoc-Early Asghill Fjacka and Mossen formations. Both units are generally thin, reaching only up to 5–10 m; the thicknesses of Fjack & Mossesn Formations are 6 m and 4 m respectively. TOC content are mostly in the 0.9 to 10 % range, with occasional higher values of up to 15 %. The source rock facies are kerogen type II and II-III.

The Early Silurian Shales

Potential source rocks in the Silurian succession are found within the Llandovery, Wenlock and, presumably, Ludlow-aged strata. The Silurian source rocks are composed of dark grey and black graptolite shales and dark grey and black clayey marlstones. Within the Baltic Basin organic matter content generally ranges from 0.7 to 9–11%, but can be as high as 16.46 % (fig. 5.5.b; Zdanaviciute, Lazauskiene, 2004). In terms of petrography, the organic matter is dominated by syngenetic, sapropelic and marine material, together with vitrinite-like particles and abundant faunal remains. Detrital sapropel is scattered as very fine-grained particles and lenses. Liptinite (up to 20%) generally occurs together with dispersed liptodetrinite in sapropelic organic matter, or more rarely as scattered particles. (Zdanavičiūtė, Swadowska 2002, Zdanaviciute, Lazauskiene, 2004, 2007, 2009).

Maturities in the area of interest attain at pre-Silurian level 1.3% Ro and around 1.0% Ro at Silurian source rock level, and reach 1.9% on the prominent West-Lithuanian local temperature high Zdanaviciute, Lazauskiene, 2004, 2007, 2009)

 

Please note registration for the Core Workshop is available to attendees of the upcoming GTW "Hydrocarbon Exploration in Lithuania and the Baltic Region" on the 24th - 25th October 2016. Please click here for information about the event.

 

 

Buenos Aires Argentina 16 November, 2016 18 November, 2016 33655 Desktop /Portals/0/PackFlashItemImages/WebReady/lacr-gtw-moving-toward-the-prediction-of-unconventional-plays-hero-new.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Development and Operations, Engineering, Directional Drilling, Production, Hydraulic Fracturing, Reservoir Characterization, Geochemistry and Basin Modeling, Oil and Gas Analysis, Source Rock, Geophysics, Seismic, Petrophysics and Well Logs, Carbonates, Sedimentology and Stratigraphy, (Carbonate) Shelf Sand Deposits, Clastics, Deep Sea / Deepwater, Marine, Transgressive Deposits, Slope, Structure, Geomechanics and Fracture Analysis, Structural Analysis (Other), Oil Shale, Shale Gas
 
Buenos Aires, Argentina
16-18 November 2016

Join leading scientists and industry practitioners at Moving toward the Prediction of Unconventional Plays: Lessons Learned from Tight and Shale Reservoirs in Neuquén Basin, Argentina, a Geosciences Technology Workshop (GTW) hosted by the American Association of Petroleum Geologists (AAPG) and the Argentine Association of Petroleum Geologists and Geophysicists (AAGGP).

Houston Texas United States 06 December, 2016 08 December, 2016 13606 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-basic-petroleum-geology-for-the-non-geologist.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Engineering, Petrophysics and Well Logs, Basin Modeling, Source Rock, Petroleum Systems, Production
 
Houston, Texas, United States
6-8 December 2016

Here is an introduction to the tools and techniques that geologists and geophysicists use to locate gas and oil, that drillers use to drill the wells and that petroleum engineers use to test and complete the wells and produce the gas and oil. Exercises throughout the course provide practical experience in well log correlation, contouring, interpretation of surface and subsurface, contoured maps, seismic interpretation, well log interpretation, and decline curve analysis.

Online Training
23 April, 2015 23 April, 2015 16809 Desktop /Portals/0/PackFlashItemImages/WebReady/an-analytical-model-for-shale-gas-permeability-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
23 April 2015
Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs.
02 December, 2014 02 December, 2014 11967 Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-multiscale-modeling-of-gas-transport-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
2 December 2014

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used.

30 October, 2014 30 October, 2014 11390 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-kerogen-maturity-determinations.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
30 October 2014

Cross disciplinary workflows play an important part of successful characterization of shale reservoirs. This course discusses how the artificial kerogen maturity of organic-rich Green River shale affects the petrophysical, micro-structural, geochemical and elastic properties.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

09 December, 2010 09 December, 2010 1466 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-bakken-petroleum-system-of-the-williston-basin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
9 December 2010

The Mississippian-Devonian Bakken Petroleum System of the Williston Basin is characterized by low-porosity and permeability reservoirs, organic-rich source rocks, and regional hydrocarbon charge.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!