Date: 25 September 2022
Time: 8:30am - 4:30pm
Course Instructor: Alberto Ortiz, Net Zero Carbon Solutions
Registration Fee: $530
Registration Deadline: 25 August 2022
Short Course registration is included as part of the GTW registration process.
The petrophysical characterization of unconventional shale-type reservoirs has been one of the most approached and relevant issues in the oil and gas industry in the last 8 years. This is because after several years, the operating companies comprehended the impact that an appropriate characterization of the reservoir has on their project economics.
Another reason for this were the technical obstacles encountered in the measurement of petrophysical properties such as porosity, saturation and permeability due to the complexity of this type of reservoir. Obstacles and limitations not only relate to laboratory measurements but also to electrical logging tools.
As a consequence of this, nowadays, petrophysical evaluations in this type of reservoir do not have standardized workflows established and accepted worldwide as is the case for conventional reservoirs. This motivates the professionals involved in the study of this type of rocks to dedicate a lot of effort in the validation of the technologies used, and sometimes it is difficult for them to understand the results, the evaluation of uncertainties and the construction of petrophysical models with results and representative parameters of the subsurface conditions.
This course will focus on providing key knowledge for a better characterization of the rock both in the aspects related to the matrix represented by mineralogy and kerogen as well as the fluids present. The approach will be based on the convergence of different technologies that support and give robustness to the results.
The contents that will be provided will include laboratory testing techniques and petrophysical evaluation of electrical well logs for unconventional shale-type reservoirs. The contents provided will cover a variety of studies based on the most diverse physical principles that will include the latest advances and techniques used in the industry such as Nuclear Magnetic Resonance, Spectroscopy, Dielectric, Computed axial tomography and SEM images, among others.
As a result of this, attendees will have tools that allow a more comprehensive understanding of this type of rocks, a better assessment of the uncertainty of the model used and the necessary steps to improve its precision, accelerating the learning curve. The contents provided will also allow knowing the critical parameters that must be taken into account for the definition of areas to be drilled.
Course Topics
Reservoir heterogeneity characterization from outcrops to lab data and electrical logging.
Most relevant unconventional plays of the world. Main characteristics.
The petrophysical model. Components and definitions, construction, uncertainties, strengths and weakness.
Lab studies: porosity, saturation, mineralogy, organic geochemistry and permeability.
Electrical logging response on unconventional shale plays: triple combo, NMR, NMR T1T2, nuclear spectroscopy, spectral GR, dielectric.
The effect of maturity on kerogen.
Challenges on water saturation calculation.
Data integration. Interpretation workflows and core calibration.