Ready to buy or
need assistance?
Contact Us
1-800-364-2274
Recent Posts
No posts yet.
 
With the increasing importance of unconventional resource plays, efforts have been made to better estimate the storage capacity of unconventional reservoirs. Proper estimation of oil/gas in-place requires, among other considerations, improved determination of the expulsion capacity and porosity of tight reservoirs. In organic-rich rocks, permeability of the hydrocarbon-wet pore network (i.e., organic pores) can be significantly higher than that of the inorganic matrix and fracture pore network. Therefore, organic porosity can be an important factor on the economic viability of unconventional plays.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/DL-IArango-talktitle-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Understanding Expulsion Capacity and Organic Porosity in Unconventional Petroleum Systems
 

CERA was a diverse and dynamic week. A record-breaking 4,500 CEO’s, leaders, energy ministers and global representatives from more than 70 countries attended the March 4-9 event to ponder the future of the industry. And this year, AAPG got to play an important role in this conversation.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/staying-in-zone-geoscience-matters-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true AAPG making the case to energy industry leaders Staying in Zone: Geoscience Matters
 
Maintaining a deep understanding of the rocks themselves is at the heart of petroleum geology, and nowhere is it more evident than at the wellsite, where the cuttings provide a detailed story of not just the petrophysical qualities of the formation, but also give clues to the depositional history.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/blog-learn-interview-with-william-feathergail-wilson-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Interview with William Feathergail Wilson, Trailblazers in Geology Series
 

When considering the future of our industry, innovation and new technologies are always discussed. It might be splitting hairs but I believe that having a “view” toward the future could be more important.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/wyatt-doug.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true EMD Expanding Horizons at 2018 ACE
 

Just days ago we, here in North America, experienced a full solar eclipse. As daylight turned to twilight in midday, outside temperatures fell, and we witnessed one of the grandest celestial dances as the moon slipped between Earth and sun. Awe and wonder is a natural and human response to such an event.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-hero-2017-09sep.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Holding on to Our Sense of Wonder and Awe
 

The West Texas (Permian) Basin is a complexly structured intracratonic (IC) basin with prolific oil and natural gas production. It began as a subsidence basin ('Tobosa Basin') from Middle Ordovician to Devonian time, a response to the Cambrian rifting that separated Gondwana and Laurentia. In the Pennsylvanian to early Permian, it formed part of the Ancestral Rocky Mountains (ARM) orogen. The Texas-New Mexico segment of the ARM contains small to medium basement-cored uplifts, folds, thrust faults and two trends of strike-slip faults, with a pattern that is consistent with SW-NE compression. The largest thrust fault known in the basin is SW-vergent, and faces the deepest part of the Delaware Basin. This direction of compression is similar to that observed in the southern Oklahoma part of the ARM, which shows NE-vergent thrusting and left-lateral faulting.

This SW-NE compressive stress is grossly inconsistent with the northwestward convergence of the Ouachita-Marathon thrust belt southeast of the ARM. The ARM-generating stress may have originated either from the Pacific side (by flat subduction) or from strong continental collision in the Appalachian Orogen. Lines of weakness generated during the Proterozoic and/or Cambrian concentrated stress and created the complex structures.

The West Texas branch of the ARM is buried by over 2.5 km of post-deformational Permian strata -- the Permian Basin. Subsidence began during ARM deformation, then increased in rate and continued to the end of the Permian. Permian subsidence resulted in the maintenance of isolated deep-water marine basins until Late Permian time. The Marathon orogen also subsided, and shed little clastic material into the basin. Despite Mesozoic basin-margin modifications, the Permian isopach pattern suggests a bowl-shaped subsidence centered on the Central Basin axis of uplift. The size and shape of the Permian Basin are similar to other IC basins (Illinois, Michigan, Williston). Similar to some IC basins, the central basin area hosts a 1100-Ma mafic complex, which was subjected to compression in Pennsylvanian time. Sinking of a mafic crust or its subjacent lithosphere, begun during compression, may have been a driving force for Permian subsidence.

Over most of the basin, later Permian subsidence was responsible for putting source rocks into the oil window. Further maturation to gas occurred within the deep basins generated by ARM deformation and Marathon thrust loading.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-tectonics-and-subsidence-in-the-west-texas-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Tectonics and Subsidence in the West Texas (Permian) Basin, A Model for Complex Intracratonic Basin Development
 

Comparison of the hydrocarbon systems and geometries of the complex intracratonic West Texas (Permian) Basin and the complex postrift subsidence basins of the Gulf Coast / Gulf of Mexico yield useful insights for basin evolution and play development. The West Texas basin contains source rocks in the Ordovician and Devonian, but much generation comes from the Late Mississippian, Pennsylvanian and Permian basinal sediments. These were deposited in a poorly ventilated remnant basin during compression and strike-slip of the Ancestral Rocky Mountains orogeny, and subsidence of the intracratonic Permian Basin. Maturation resulted from Permian intracratonic subsidence, with hydrocarbons sealed from later leakage by late Permian salt and a fortunate tectonic setting. By contrast, the major Jurassic source rocks of the Gulf basins are at the base of the postrift subsidence, and are matured by further subsidence. Later Cretaceous source rocks (Eagle Ford) are mature in the main Gulf basin, but again lie near the bottom of the thick sedimentary package in the area. The younger part of the succession yields mostly gas formed during outbuilding of the shelf margin by Cenozoic deltaic progradation. No cap is present on the basin (except for subsalt plays), and seepage is widespread.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-tale-of-two-basins-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true A Tale of Two Basins: Sources and Timing of Petroleum and Natural Gas Generation in the Mature Gulf Coast/Gulf of Mexico and West Texas (Permian) Basins
 

The Yegua Formation (Late Middle Eocene) is a minor siliciclastic progradation of the Gulf of Mexico shelf margin between the larger Early Eocene and Oligocene shelf-margin progradations. During Yegua time (and unlike the other units of the Middle and Late Eocene), four to eight sea-level fluctuations with a 100-300 ka period alternately pushed marine rocks toward the basin margins and pushed deltaic sedimentation to and past the shelf edge. Because of limited to moderate sand supply and the flat coastal plains, the updip (highstand) depositional complexes are nearly entirely separated from the downdip (lowstand) shelf-edge deltas and slope fans. Maximum flooding surfaces can be mapped over much of the area and correlated along and across the basin. The Yegua is truly a laboratory for sequence stratigraphy. A number of plays in the downdip and 'mid-dip' (incised valley complexes) trends have produced over 4 TCF of gas and condensate, and new discoveries await the return of exploration capital. The Yegua story is significant to all those interested in siliciclastic stratigraphy in passive-margin settings.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-thomas-ewing-yegua-formation-late-middle-eocene-in-gulf-coast-basin-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Yegua Formation (Late Middle Eocene) in the Gulf Coast Basin, as a Type Laboratory for Sequence Stratigraphy in Hydrocarbon Exploration
 

Considering a career in industry? The oil and gas industry? In Exploration? Maybe Production? Perhaps Planning? This presentation of the Top Ten Tips for Working in Industry was developed during my 34 year career working for Mobil and ExxonMobil as a technical professional, supervisor, manager, and researcher. I’ll use examples and stories from my career, working with foreign governments in Azerbaijan and Kazakhstan, working in Mobil’s Headquarters in Fairfax, Virginia, being a supervisor and manager in exploration, and working as a senior research associate in ExxonMobil’s Upstream Research Company, recruiting for ExxonMobil at top American Universities interviewing students; and working as the Planning Manager, in Mobil’s Norwegian Affiliate in Stavanger, Norway. All of my experiences over the past 34 years have taught me how to be a successful in these fields, and I enjoy sharing these lessons with others who may be considering careers in the oil and gas industry.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-marsha-french-my-top-ten-tips-for-working-in-industry-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true My Top Ten Tips for Working in Industry: Lessons Learned Over My 30-Plus-Year Career Working in Oil and Gas Exploration, Production, Planning and Research
 

Authigenic quartz overgrowths are the most common pore-occluding mineral in deeply buried (>2500 m) quartzose sandstones. But, deeply buried reservoirs of this kind in the North Sea contain more porosity than expected when the influence of authigenic microcrystalline quartz (microquartz, or the good quartz) is ignored. However, we know relatively little about the nature and origin of this porosity-preserving microquartz, which inhibits the bad and ugly quartz overgrowths from growing and occluding pores. Therefore, advanced analytical techniques have been utilized to improve our understanding of the controls on microquartz development in several examples where porosity is preserved in these and similar sandstone reservoirs.

In this study, several advanced analytical techniques were used to evaluate the crystallographic and compositional controls on the formation of microquartz. SEM/Cathodoluminescence (CL) confirms that (bad and ugly) quartz overgrowths have a complex growth history. Electron Backscatter Diffraction (EBSD) combined with Wavelength Dispersive Spectrometry (WDS) confirmed and elaborated on the complex growth history: the complex banding visible in CL is not due to changes in crystallographic orientation but more likely variations in quartz composition associated with changes in pore fluid composition and/or reservoir conditions. Finally, Secondary Ion Mass Spectrometry (SIMS) analysis provides oxygen isotope data providing insight into those initial reservoir conditions and temperature of formation of microcrystalline quartz.

Integrating the results from these advanced analytical techniques has developed an understanding of the processes controlling the formation of porosity-preserving microquartz and improved our ability to reconstruct the reservoir diagenetic history of microquartz growth leading to a proposed model for predicting porosity preservation in deep, hot sandstone reservoirs.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-marsha-french-authigenic-quartz-the-good-the-bad-the-ugly-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Authigenic Quartz: The Good, The Bad, and the Ugly: Developing a Model for Preserving Porosity in Deep, Hot Sandstone Reservoirs
«« First « Previous |1 2 3 4 5 6 7 8 9 10 11 12 | Last ››
In-Person Training
Houston Texas United States 04 February, 2020 04 February, 2020 54616 Desktop /Portals/0/PackFlashItemImages/WebReady/De-Risking-Unconventional-Reservoir-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Member, Engineering, Reservoir Engineering, Drilling, Petrophysics and Well Logs, Basin Modeling and Geochemistry, Petroleum Systems
 
Houston, Texas, United States
4 February 2020

Unconventional hydrocarbon reservoirs, particularly shale-oil and shale-gas, are the future of the oil industry. It took the oil industry about 160 years, since the first oil well in the USA was drilled in 1859, to master oil production from conventional hydrocarbon reservoirs. Even with that we still face some challenges in deep water drilling, completion, and production as well as enhanced oil recovery from heavy oil carbonates, tar sands, and tight gas sands. 

Barranquilla Atlántico Colombia 26 March, 2020 27 March, 2020 54605 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-lacr-exploration-development-in-southern-caribbean-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Risk Analysis, Basin Modeling and Geochemistry, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Seismic, Magnetic, Gravity, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Eolian Sandstones, Fluvial Deltaic Systems, High Stand Deposits, Incised Valley Deposits, Marine, Regressive Deposits, Sheet Sand Deposits, Shelf Sand Deposits, Slope, Transgressive Deposits, Sequence Stratigraphy, Structure, Structural Analysis (Other), Tectonics (General), Geomechanics and Fracture Analysis, Fold and Thrust Belts, Compressional Systems, Structural Traps, Deep Basin Gas, Tight Gas Sands, Stratigraphic Traps, Member
 
Barranquilla, Atlántico, Colombia
26-27 March 2020

The AAPG Latin America & Caribbean Region and the Colombian Association of Petroleum Geologists and Geophysicists (ACGGP) invite you join us for GTW Colombia 2020, a specialized workshop bringing leading scientists and industry practitioners to share best practices, exchange ideas and explore opportunities for future collaboration.

The 2-day workshop brings together technical experts and industry leaders from Colombia and throughout the Americas to take a multidisciplinary look at future opportunities for exploration and development of Southern Caribbean Frontier Basins.

Online Training
28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

09 December, 2010 09 December, 2010 1466 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-bakken-petroleum-system-of-the-williston-basin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
9 December 2010

The Mississippian-Devonian Bakken Petroleum System of the Williston Basin is characterized by low-porosity and permeability reservoirs, organic-rich source rocks, and regional hydrocarbon charge.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Request a Visit
 

Conventional hydrocarbon resources have been associated with pre-Devonian petroleum systems across the globe. Although individual accumulations can be quite significant, the relative importance of pre-Devonian-derived oils is limited compared to the global conventional resource-base. With growing interest in unconventional resources, the relative importance of these systems is expected to increase as plays develop.

Request a visit from Barry Katz!

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

Petroleum Systems

Petroleum Systems
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Related Interests

See Also ...