Wipeout Zones – Blame the Rocks

Contributors: Satinder Chopra

A hydrocarbon exploration application that has caused multicomponent seismic data to be acquired across several offshore areas is the ability of S-wave modes to image geology inside broad, thick intervals of gas-charged sediment where P-P seismic data show no usable reflections.

The term “P-wave wipeout zone” is often used to describe this imaging problem.

An example of P-P and converted-shear (P-SV) imaging across an area of shallow, gas-charged sediments of the Gulf of Mexico is displayed as figure 1.

Visual inspection of these images shows the P-P mode provides poor, limited information about geological structure, depositional sequences and sedimentary facies inside the image space dominated by gas-charged sediment (CDP coordinates 10,000 to 10,150).

Conventional seismic stratigraphy (P-P mode only) would have little success in analyzing geological conditions within this poor-quality P-P image area.

In contrast, the P-SV mode (figure 1b) provides an image that is sufficient for structural mapping, as well as for analyzing seismic sequences and seismic facies.

Both of these interpretation options are obvious advantages of elastic wavefield stratigraphy over conventional seismic stratigraphy in areas having gas-charged sediment.

A simple Earth model consisting of a shale layer atop a sand layer can be used to evaluate P-P and P-SV reflectivity behaviors associated with P-wave wipeout zones.

Two pore-fluid situations are defined on table 1 below:

  • A condition where both layers have 100-percent brine saturation.
  • A second condition where both layers have a mixed pore fluid of 80 percent brine and 20 percent gas.

P-P and P-SV reflectivity curves for these two pore-fluid conditions are shown as figure 2.

When pore fluid is 100 percent brine, P-P and P-SV reflectivities have opposite algebraic signs but approximately the same average magnitude (about 5 percent) for incidence angles ranging from 0 to 25 degrees (panel a). When pore fluid changes to 20 percent gas (panel b), P-SV reflectivity is unchanged, but P-P reflectivity decreases in magnitude and undergoes a phase reversal at an incident angle of approximately 18 degrees.

The gas-charged sediment, thus, does not affect P-SV imaging – but P-P imaging is seriously degraded. The negative reflectivity for incident angles between 0 and 18 degrees essentially cancel the positive reflectivities for incident angles greater than 18 degrees, resulting in “wipeout” P-wave reflections.

The effect would be similar to that exhibited by the data on figure 1.


Conclusion: There is logical rock physics evidence why P-wave wipeout zones occur in strata having low gas saturation and why S-mode data are insensitive to low gas saturation.

Comments (0)

 

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4356 Book
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4369 Book

See Also: Bulletin Article

A new hierarchical architectural classification for clastic marginal-marine depositional systems is presented and illustrated with examples. In ancient rocks, the architectural scheme effectively integrates the scales of sedimentology (core, outcrop) and sequence stratigraphy (wireline-log correlation, reflection seismic). The classification also applies to modern sediments, which allows for direct comparison of architectural units between modern and ancient settings. In marginal-marine systems, the parasequence typically defines reservoir flow units. This classification addresses subparasequence scales of stratigraphy that commonly control fluid flow in these reservoirs. The scheme consists of seven types of architectural units that are placed on five architectural hierarchy levels: hierarchy level I: element (E) and element set (ES); hierarchy level II: element complex (EC) and element complex set (ECS); hierarchy level III: element complex assemblage (ECA); hierarchy level IV: element complex assemblage set (ECAS); and hierarchy level V: transgressive-regressive sequence (T-R sequence). Architectural units in levels I to III are further classified relative to dominant depositional processes (wave, tide, and fluvial) acting at the time of deposition. All architectural units are three-dimensional and can also be expressed in terms of plan-view and cross-sectional geometries. Architectural units can be linked using tree data structures by a set of familial relationships (parent-child, siblings, and cousins), which provides a novel mechanism for managing uncertainty in marginal-marine systems. Using a hierarchical scheme permits classification of different data types at the most appropriate architectural scale. The use of the classification is illustrated in ancient settings by an outcrop and subsurface example from the Campanian Bearpaw–Horseshoe Canyon Formations transition, Alberta, Canada, and in modern settings, by the Mitchell River Delta, northern Australia. The case studies illustrate how the new classification can be used across both modern and ancient systems, in complicated, mixed-process depositional environments.
Desktop /Portals/0/PackFlashItemImages/WebReady/a-hierarchical-approach-to-architectural-classification.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3769 Bulletin Article

See Also: Field Seminar

Participants will learn a specific and comprehensive methodology for finding and developing conventional and unconventional oil and gas resources associated with lake deposits. The seminar will start with the Quaternary Bonneville basin in Utah, to build familiarity with lacustrine depositional processes. Participants then examine world-famous exposures of organic-rich mudstone, fluvial sandstone, and carbonate microbialite facies in Wyoming.

Desktop /Portals/0/PackFlashItemImages/WebReady/FS-lacustrine-basin-exploration-2014.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 151 Field Seminar

See Also: Online e Symposium

Desktop /Portals/0/PackFlashItemImages/WebReady/New-Insights-into-the-Stratigraphic-Framework-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 16283 Online e-Symposium