Carbon Sequestration Rules Emerge

Just a few years ago uttering the words “carbon sequestration” at a party would result in raised eyebrows and puzzled looks: “Carbon what?”

Today, however, the term rolls smoothly off politicians’ tongues: Al Gore gave it positive mention in his film “An Inconvenient Truth,” and the Bush administration’s energy strategy depends on it to harness the energy in the nation’s vast coal resources while minimizing carbon emissions to the atmosphere.

A primary focus of the U.S. government’s current research effort is the long-term storage of carbon in geologic formations, including depleted oil and gas reservoirs, unmineable coal seams and deep saline formations. President Bush’s fiscal year 2009 budget request for carbon sequestration programs within the U.S. Department of Energy (DOE) is $149 million.

There are other methods of carbon sequestration: Increasing soil carbon content by changing crop tilling practices, for example, is currently in use with good results. Injecting CO2 into the oceans is being studied, but faces both technological and public acceptance hurdles. Geologic sequestration provides the greatest hope for storing large volumes of CO2 close to the point sources producing it.

However, geologic sequestration also faces technological challenges – after all, the current goal of DOE’s Regional Carbon Sequestration Partnerships’ (RCSP) large-scale, multi-year demonstrations is to inject in a single well up to one million tons of CO2 annually.

Please log in to read the full article

Just a few years ago uttering the words “carbon sequestration” at a party would result in raised eyebrows and puzzled looks: “Carbon what?”

Today, however, the term rolls smoothly off politicians’ tongues: Al Gore gave it positive mention in his film “An Inconvenient Truth,” and the Bush administration’s energy strategy depends on it to harness the energy in the nation’s vast coal resources while minimizing carbon emissions to the atmosphere.

A primary focus of the U.S. government’s current research effort is the long-term storage of carbon in geologic formations, including depleted oil and gas reservoirs, unmineable coal seams and deep saline formations. President Bush’s fiscal year 2009 budget request for carbon sequestration programs within the U.S. Department of Energy (DOE) is $149 million.

There are other methods of carbon sequestration: Increasing soil carbon content by changing crop tilling practices, for example, is currently in use with good results. Injecting CO2 into the oceans is being studied, but faces both technological and public acceptance hurdles. Geologic sequestration provides the greatest hope for storing large volumes of CO2 close to the point sources producing it.

However, geologic sequestration also faces technological challenges – after all, the current goal of DOE’s Regional Carbon Sequestration Partnerships’ (RCSP) large-scale, multi-year demonstrations is to inject in a single well up to one million tons of CO2 annually.

That is roughly equivalent to the volume of the Empire State Building – and a commercial plant would emit several times this amount.

Talk about that at a party and eyebrows will really pop up. Even if we can solve the technical challenges, public acceptance remains an issue.


Fortunately, the petroleum industry’s long experience of safely injecting CO2 into the subsurface for enhanced oil recovery (EOR) is helping solve both the technological and public acceptance challenges facing geologic sequestration.

Recognizing this fact, the Interstate Oil and Gas Compact Commission (IOGCC) formed a “Geological CO2 Sequestration Task Force” in 2002 to investigate the technical, policy and regulatory issues surrounding safe and effective geologic sequestration.

The Phase I study was funded by DOE through its National Energy Technology Laboratory. The task force included members from IOGCC member states and affiliates, state oil and gas regulators, DOE, the RCSPs, state geologists and other experts.

The principal result of Phase I was recognition that states that regulate oil and natural gas production and the sub-surface storage of natural gas have both the requisite knowledge and experience to safely regulate geologic sequestration.

They also have regulatory frameworks in place that, with some modification, could apply to geologic sequestration.

In 2006 the task force resumed work on Phase II, again funded by DOE. Representatives of the U.S. Environmental Protection Agency, U.S. Bureau of Land Management and an environmental group joined the task force for this study.

Phase II’s goal was to prepare a guidance document for states wanting to create a geologic sequestration regulatory framework. The report includes a model statute, model rules and regulations with explanatory text to implement the statute, and a report addressing legal questions on subsurface ownership and injection rights. The guidance document is available at the IOGCC Web site.


At the federal level the U.S. Environmental Protection Agency (EPA) also is reviewing the regulatory needs for carbon sequestration. Specifically, its focus is ensuring that injecting large volumes of CO2 into the subsurface does not damage drinking water sources.

The Safe Drinking Water Act places this responsibility with EPA, and is implemented through the Underground Injection Control (UIC) program. In many states the local regulatory bodies implement the UIC program on behalf of EPA. This is known as having “primacy.”

In other states this responsibility is shared by state regulators and EPA, or handled exclusively by the federal agency.

The UIC program has several well classes with different regulations for each class:

  • Class I – hazardous waste.
  • Class II – oil and gas operations, including CO2-based EOR and enhanced gas recovery, EGR.
  • Class III – mining.
  • Class IV (no longer used).
  • Class V – experimental, non-hazardous.

In March 2007 EPA issued guidance to states with primacy to permit geologic sequestration demonstration projects as Class V experimental wells. This facilitated permitting for the RCSP demonstration projects.

Shortly thereafter EPA launched a formal rule-making process to regulate long-term geologic sequestration. The agency formed a working group consisting of EPA, DOE and state officials, and fast-tracked their activities. EPA expects to issue a rule proposal for public comment this summer.

It is important to note that the current EPA process has nothing to do with regulating carbon emissions – it’s about how to safely store them. Assuming we can solve the technical and public acceptance challenges, the question of whether large-scale carbon sequestration becomes reality is something lawmakers must still decide.

You may also be interested in ...