AAPG Energy Minerals Division

Oil Sands Committee

Biannual Commodity Report - November, 2014

Steven Schamel\(^1\) and Sharleen Overland\(^2\)

Contents

Vice-Chairs

Advisory Committee

Executive Summary

Introduction

Bitumen Resources and Production

Resource Technology

Environmental Issues

Oil Sands Publications and Technical Sessions

Heavy Oil Conferences and Workshops Scheduled in 2014-2015

Selected References

Appendices

B. Web Links for Oil Sands/Heavy Oil Organizations and Publications

\(^1\) Chair, GeoX Consulting Inc., Salt Lake City, Utah, USA

\(^2\) Vice-Chair, Alberta Energy Regulator (former Energy Resources Conservation Board), Calgary, Alberta, Canada
Chair:

- Steven Schamel, PhD GeoX Consulting Inc., Salt Lake City, Utah USA

Vice-Chairs:

- Mark Holtz, P.G., P.E. (Vice-Chair: Industry), International Business Development EOR, Praxair, Inc., Austin, TX, US
- Burns Cheadle, Ph.D., P.G. (Vice-Chair: University), University of Western Ontario, London, ON, Canada
- Sharleen Overland, M.Sc. (Vice-Chair: Canadian Government), AER, Calgary, AB, Canada
- Debra Higley, Ph.D. (Vice-Chair: US Government) USGS, Denver, Colorado, US
- Mary Harris, Ph.D., P. G., (Vice-Chair: Representative of DEG), Savannah River Nation Laboratory, Aiken, SC, US
- Daniel Tearpoch, CEO (Vice-Chair: Representative of DPA), SCA, LLC, Houston, TX

Advisory Committee:

- Rudolph S. Strobl, P.G., Research Geologist Statoil Canada Ltd, Calgary, AB, Canada
- Paul G. Lillis, Ph.D., Research Geochemist, United States Geological Survey, Denver, CO, US
Executive Summary

Bitumen and heavy oil deposits occur in more than 70 countries across the world. The global in-place resources of bitumen and heavy oil are estimated to be 5.9 trillion barrels [938 billion m3], with more than 80% of these resources found in Canada, Venezuela and the United States. Globally there is just over one trillion barrels of technically-recoverable unconventional oils: 434.3 billion barrels of heavy oil, including extra-heavy crude, and 650.7 billion barrels of bitumen. Virtually all of the bitumen being commercially produced in North America is from Alberta, Canada, making it a strategic source of bitumen and of the synthetic crude oil obtained by upgrading bitumen. Estimated remaining established reserves of in-situ and mineable crude bitumen is 167 billion bbls [26.6 billion m3]. To date, just 5.4% of Canada’s initial established crude bitumen has been recovered since commercial production began in 1967. In-situ production overtook mined production for the first time in 2012 and continued to exceed mined production in 2013 (AER, 2014). The Faja Petrolifera del Orinoco (Orinoco Heavy Oil Belt) in eastern Venezuela is the world’s single largest heavy oil accumulation. The total estimated oil in-place is 1.2 trillion barrels [190 billion m3] of which 310 billion barrels [49.3 billion m3] is considered technically-recoverable. Currently, the United States is producing commercial quantities of heavy oil from sand deposits in two principal areas, the San Joaquin Basin of central California and the North Slope of Alaska. California has the second largest heavy oil accumulations in the world, second only to Venezuela. California’s oil fields, of which 52 each have reserves exceeding 100 million bbls [15.9 million m3], are located in the central and southern parts of the state. As of 2012, the proved reserves were 2,976 million bbls [473.2 million m3], nearly 65% of which is heavy oil in the southern San Joaquin Basin. In addition to the heavy oil accumulations that are being produced, California has numerous undeveloped shallow bitumen deposits and seeps, a resource is estimated to be as large as 4.7 billion bbls [0.74 billion m3]. Alaska’s heavy oil and bitumen deposits on the North Slope are very large (24 to 33 billion bbls, or 3.8 to 5.2 billion m3) and they hold promise for commercially-successful development. In all regions of sustained production, the industry is steadily improving in situ recovery methods and reducing environmental impacts of surface mining of bitumen and heavy oil.
Introduction

This commodity commonly consists of bitumen and heavy oil principally in un lithified sand. However, heavy oil reservoirs can also include porous sandstone and carbonates. Oil sands petroleum includes those hydrocarbons in the spectrum from viscous heavy oil to near-solid bitumen, although these accumulations also can contain some lighter hydrocarbons and even gas. These hydrocarbons are denser than conventional crude oil and considerably more viscous (Fig. 1), making them more difficult to recover, transport and refine. Heavy oil is just slightly less dense than water, with specific gravity in the 1.000 to 0.920 g/cc range, equivalent to API gravity of 10° to 22.3°. Bitumen and extra-heavy oil are denser than water, with an API gravity less than 10º. Extra-heavy oil is generally mobile in the reservoir, whereas bitumen is not. At ambient reservoir conditions, heavy and extra-heavy oils have viscosities greater than 100 centipoise (cP), the consistency of maple syrup. Bitumen has a gas-free viscosity greater than 10,000 cP (Danyluk et al. 1984; Cornelius, 1987), equivalent to molasses. Many bitumens and extra-heavy oils have in-reservoir viscosities many orders of magnitude large. There are a variety of factors that govern the viscosity of these high-density hydrocarbons, such as their organic chemistry, the presence of dissolved natural gas, and the reservoir temperature and pressure. The viscosity of a heavy oil or bitumen is only approximated by its density.

Some heavy oils are the direct product of immature (early) oil maturation. However, bitumen and most heavy oils are the products of in-reservoir alteration of conventional oils by water washing, evaporation (selective fractionation) or, at reservoir temperatures below 80oC, biodegradation (Blanc and Connan, 1994), all of which reduce the fraction of low molecular weight components of the oil. These light-end distillates are what add commercial value to an oil. Thus, in addition to being more difficult and costly to recover and transport than conventional oil, heavy oil and bitumen have lower economic value. Upgrading to a marketable syncrude requires the addition of hydrogen to the crude to increase the H/C ratio to values near those of conventional crudes. Heavy oil and bitumen normally contain high concentrations of NSO compounds (nitrogen, sulfur, oxygen) and heavy metals, the removal of which during upgrading and refining further discounts the value of the resource. Heavy and some extra-heavy oils can be extracted in situ by injection of steam or super-hot water, CO2, or viscosity-reducing
solvents, such as naphta. Bitumen normally is recovered by surface mining and processing with hot water or solvents.

Figure 1: Cross-plot of oil density versus viscosity indicating the fields represented by bitumen, heavy and extra-heavy oils. Actual properties are plotted for a variety of oils from producing oil sand accumulations (data from Oil & Gas Journal, April 2, 2012).

Resources and Production

Resources and Production – Global

The International Energy Agency estimates the total world oil resources are between 9 and 13 trillion barrels, of which just 30% is conventional crude oil. The remaining 70% of unconventional crude is divided 30% oil sands and bitumen, 25% extra-heavy oil, and 15% heavy oil. Heavy oil and bitumen deposits occur in more than 70 countries across the world. Meyer et al. (2007) note that heavy oils are found in 192 sedimentary basins and bitumen
accumulations occur in 89 basins. However, these unconventional oils are not uniformly distributed (Table 1). The global in-place resources of bitumen and heavy oil are estimated to be 5.9 trillion barrels [938 billion m3], with more than 80% of these resources found in Canada, Venezuela and the United States (Meyer and Attanasi, 2003; Hein, 2013). The largest oil sand deposits in the world, having a combined in-place resource of 5.3 trillion barrels [842 billion m3], are along the shallow up-dip margins of the Western Canada sedimentary basin and the Orinoco foreland basin, eastern Venezuela. Western Canada has several separate accumulations of bitumen and heavy oil that together comprise 1.7 trillion barrels [270 billion m3]. The Oronoco Heavy Oil Belt is a single extensive deposit containing 1.2 trillion barrels [190 billion m3] of extra-heavy oil. Both basins have extensive world-class source rocks and host substantial conventional oil pools in addition to the considerably larger resources within shallow oil sands.

Table 1: Estimated global in-place heavy oil and bitumen resources and technically-recoverable reserves. The table also shows the percentage of global reserves occurring in each region. The heavy oil category includes extra-heavy oil. Source: Meyer and Attanasi (2003).

<table>
<thead>
<tr>
<th>REGION</th>
<th>HEAVY OIL (BBO)</th>
<th>BITUMEN (BBO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resources</td>
<td>Reserves</td>
</tr>
<tr>
<td>N. America</td>
<td>185.8</td>
<td>35.3</td>
</tr>
<tr>
<td>S. America</td>
<td>2043.8</td>
<td>265.7</td>
</tr>
<tr>
<td>Europe</td>
<td>32.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Russia</td>
<td>103.1</td>
<td>13.4</td>
</tr>
<tr>
<td>Middle East</td>
<td>651.7</td>
<td>78.2</td>
</tr>
<tr>
<td>Asia</td>
<td>211.4</td>
<td>29.6</td>
</tr>
<tr>
<td>Africa</td>
<td>40.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Western</td>
<td>2315.4</td>
<td>301.0</td>
</tr>
<tr>
<td>Hemisphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>1025.4</td>
<td>133.3</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>3340.8</td>
<td>434.3</td>
</tr>
</tbody>
</table>

Globally there is just over one trillion barrels [159.0 billion m3] of technically-recoverable unconventional oils (Table 1), 434.3 billion barrels [69.1 billion m3] of heavy oil, including extra-heavy crude, and 650.7 billion barrels [103.5 billion m3] of bitumen (Meyer and Attanasi, 2003). South America, principally Venezuela, has 61.2% of the heavy oil reserves and North America, mainly western Canada, has 81.6% of the bitumen reserves.
Figure 2: By country, the estimated technically-recoverable heavy and extra-heavy reserves vs. the portion of the reserves in production or development. Sources: Meyer and Attanasi (2003), and other.

Heavy oil, in general, is more easily produced, transported and marketed than bitumen. Consequently, it tends to be in a more advanced stage of development than bitumen deposits. Figure 2 shows the relative intensity of heavy oil exploitation for countries with substantial heavy oil reserves. Note that countries with very large reserves of conventional crude oil, particularly Saudi Arabia and Kuwait, have been slow to develop their heavy oil resource, whereas countries with small or dwindling conventional oil reserves are exploiting heavy oil to a greater degree.

Resources and Production - Canada

Nearly all of the bitumen being commercially produced in North America is from Alberta, Canada. Canada is an important strategic source of bitumen and of the synthetic crude oil (SCO) obtained by upgrading bitumen. Bitumen and heavy oil are also characterized by high concentrations of nitrogen, oxygen, sulfur, and heavy metals, which results in increased costs for
extraction, transportation, refining, and marketing compared to conventional oil (Meyer and Attanasi 2010). Research and planning are ongoing for transportation alternatives for heavy crude, bitumen, and upgraded bitumen using new and existing infrastructure of pipelines and railways. Such integration has been called a virtual “pipeline on rails” to get the raw and upgraded bitumen to U.S. markets (Perry and Meyer 2009). SCO from bitumen and (or) partially upgraded bitumen is being evaluated for potential long-distance transport to refineries in the Midwest and Gulf states of the USA and to existing or proposed terminals on the west coast of North America. Associated concerns include effects on the price of crude oil, and the environmental impacts that are associated with land disturbance, surface reclamation, habitat disturbance, and oil spills or leaks with associated potential pollution of surface and ground waters.

Table 2: Summary of Alberta’s energy reserves, resources, and production at the end of 2013 (AER, 2014).

<table>
<thead>
<tr>
<th></th>
<th>Crude bitumen</th>
<th>Crude oil</th>
<th>Natural gas</th>
<th>Raw coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(million cubic metres)</td>
<td>(billion barrels)</td>
<td>(million cubic metres)</td>
<td>(billion barrels)</td>
</tr>
<tr>
<td>Initial in-place resources</td>
<td>293.125</td>
<td>1.844</td>
<td>11.357</td>
<td>71.5</td>
</tr>
<tr>
<td>Initial established reserves</td>
<td>28.092</td>
<td>177</td>
<td>2.863</td>
<td>18.0</td>
</tr>
<tr>
<td>Cumulative production</td>
<td>1.284</td>
<td>8.1</td>
<td>2.617</td>
<td>16.5</td>
</tr>
<tr>
<td>Remaining established reserves</td>
<td>26.798</td>
<td>169</td>
<td>246</td>
<td>1.5</td>
</tr>
<tr>
<td>Annual production</td>
<td>101</td>
<td>0.637</td>
<td>28.4</td>
<td>0.179</td>
</tr>
<tr>
<td>Ultimate potential (recoverable)</td>
<td>50,000</td>
<td>315</td>
<td>3,130</td>
<td>19.7</td>
</tr>
</tbody>
</table>

*Expressed as “as is” gas, except for annual production, which is at 37.4 megajoules per cubic metre; includes coalbed methane natural gas.
*Measured at field gate (or 34.7 trillion cubic feet downstream of straddle plant).
*Does not include unconventional natural gas.
*Annual production is marketable.

Excellent sources of information on Alberta oil sands and carbonate-hosted bitumen deposits are the resource assessments and regulatory information by the Alberta Energy Regulator (http://www.aer.ca/data-and-publications/statistical-reports/st98). Estimated in-place resources for the Alberta oil sands are 1845 billion barrels (bbls) [293.1 billion m³] (AER 2014, p. 3). Estimated remaining established reserves of in-situ and mineable crude bitumen is 167 billion BBLs [26.6 billion m³]; only 5.4% of the initial established crude bitumen has been produced since commercial production began in 1967 (Table 2) (AER 2014, p. 9). Cumulative bitumen production for Alberta in 2013 was 9.6 billion bbls [1,527 million m³]. The bitumen that was
produced by surface mining was upgraded; *in-situ* bitumen production was marketed as non-upgraded crude bitumen (ERCB 2012). Alberta bitumen production has more than doubled in the last decade, and is expected to increase to greater than 3 million bbls per day (> 0.48 million m³) over the next decade. Over the last 10 years, the contribution of bitumen to Alberta’s total primary energy production has increased steadily. A breakdown of production of energy in Alberta from all sources, including renewable sources, is given in Figure 3.

Crude bitumen is heavy and extra heavy oil that at reservoir conditions has a very high viscosity such that it will not naturally flow to a well bore. Administratively, in Alberta, the geologic formations (whether clastic or carbonate) and the geographic areas containing the bitumen are designated as the Athabasca, Cold Lake or Peace River oil sands areas (Fig. 4). Most of the in-place bitumen is hosted within un lithified sands of the Lower Cretaceous Wabiskaw-McMurray deposit in the in-situ development area (Table 3), followed by the Grosmont carbonate-bitumen deposit, and the Wabiskaw-McMurray deposit in the surface mineable area (Table 3).

![Figure 1](image)

Figure 1: Total primary energy production in Alberta (AER, 2014).

Included in the initial in-place volumes of crude bitumen (Table 3) are reassessments for the Athabasca-Grosmont carbonate-bitumen (done in 2009) and the Athabasca-Grand Rapids oil sands and Athabasca-Nisku carbonate-bitumen deposits (done in 2011). The Nisku reassessment resulted in a 57% increase in initial bitumen volume in place. The Nisku Formation, like the
Athabasca-Grosmont carbonate-bitumen deposit, is a shelf carbonate that has undergone significant leaching and karstification, with the creation of an extensive vug and cavern network. Conventional oil migrated and infilled the paleocave deposits and then degraded in place to form the bitumen. Other prospective carbonate-bitumen reservoirs are being explored west of the town site of Fort McMurray, with initial industry estimates indicating that bitumen pay zones may exceed 100 m [328 ft] in thickness, hosted primarily within the Leduc Formation carbonates (AER, 2014).

![Map of Alberta's oil sands areas and select deposits](image)

Figure R3.1: Alberta’s oil sands areas and select deposits

Figure 4: Alberta’s Peace River, Athabasca and Cold Lake oil sands areas, highlighting the main deposits (AER, 2014).

A number of factors (including economic, environmental and technological criteria) are applied to the initial in-place volumes of crude bitumen to attain the established reserves. In Alberta there are two types of reserves for crude bitumen – those that are anticipated to be recovered by surface mining techniques (generally in areas with < 65 m [< 213 ft] of overburden in the Athabasca area), and those to be recovered by underground in-situ and largely thermal technologies in areas with more than 65 m [213 ft] of overburden. The principal technology of choice for Athabasca is Steam-Assisted Gravity Drainage (SAGD), for Cold Lake, it is Cyclic...
Steam Stimulation (CSS), and for Peace River it is thermal and primary recovery. (Tables 4 and 5).

Table 3: Initial in-place volumes of crude bitumen as of December 31, 2013 (AER, 2014).

<table>
<thead>
<tr>
<th>Oil sands area Oil sands deposit</th>
<th>Initial volume in-place (10⁶ m³)</th>
<th>Area (10⁶ ha)*</th>
<th>Average pay thickness (m)</th>
<th>Average reservoir parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athabasca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Grand Rapids</td>
<td>5 817</td>
<td>359</td>
<td>8.5</td>
<td>9.2 58 33</td>
</tr>
<tr>
<td>Middle Grand Rapids</td>
<td>2 171</td>
<td>183</td>
<td>6.8</td>
<td>8.4 55 32</td>
</tr>
<tr>
<td>Lower Grand Rapids</td>
<td>1 286</td>
<td>134</td>
<td>5.6</td>
<td>8.3 52 33</td>
</tr>
<tr>
<td>Wabiskaw-McMurray (mineable)</td>
<td>20 823</td>
<td>375</td>
<td>25.9</td>
<td>10.1 76 28</td>
</tr>
<tr>
<td>Wabiskaw-McMurray (in situ)</td>
<td>131 609</td>
<td>4 694</td>
<td>13.1</td>
<td>10.2 73 29</td>
</tr>
<tr>
<td>Nisku</td>
<td>16 232</td>
<td>819</td>
<td>14.4</td>
<td>5.7 68 20</td>
</tr>
<tr>
<td>Grosmont</td>
<td>64 537</td>
<td>1 766</td>
<td>23.8</td>
<td>6.6 79 20</td>
</tr>
<tr>
<td>Subtotal</td>
<td>242 475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Lake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Grand Rapids</td>
<td>5 377</td>
<td>612</td>
<td>4.8</td>
<td>9.0 65 28</td>
</tr>
<tr>
<td>Lower Grand Rapids</td>
<td>10 004</td>
<td>658</td>
<td>7.8</td>
<td>9.2 65 30</td>
</tr>
<tr>
<td>Clearwater</td>
<td>9 422</td>
<td>433</td>
<td>11.8</td>
<td>8.9 59 31</td>
</tr>
<tr>
<td>Wabiskaw-McMurray</td>
<td>4 287</td>
<td>485</td>
<td>5.1</td>
<td>8.1 62 28</td>
</tr>
<tr>
<td>Subtotal</td>
<td>29 090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluesky-Geithing</td>
<td>10 968</td>
<td>1 016</td>
<td>6.1</td>
<td>8.1 68 26</td>
</tr>
<tr>
<td>Belloy</td>
<td>282</td>
<td>26</td>
<td>8.0</td>
<td>7.8 64 27</td>
</tr>
<tr>
<td>Debolt</td>
<td>7 800</td>
<td>258</td>
<td>25.3</td>
<td>5.1 66 18</td>
</tr>
<tr>
<td>Shunda</td>
<td>2 510</td>
<td>143</td>
<td>14.0</td>
<td>5.3 52 23</td>
</tr>
<tr>
<td>Subtotal</td>
<td>21 560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>293 125</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: *ha = hectare.

Alberta is Canada’s largest producer of marketable gas (69% in 2013) and of crude oil and equivalent production, and the only producer of upgraded bitumen (also called ‘SCO’) and non-upgraded bitumen. Heavy oil is produced in both Alberta and Saskatchewan. Although there are oil-sands resources in northwestern Saskatchewan, as yet these have not been brought to
commercial production. In Alberta, of the 2013 primary energy production, bitumen accounted for 80% of the total crude oil and raw bitumen production, with production increasing by 5% in surface mining areas, and by 12% from in-situ areas from the previous year. During this same time crude oil production increased by 5%, total marketable natural gas declined by 3%, total natural gas liquids production increased by 6%, and coal production declined by 3%. By comparison, only about 0.2% of energy is produced from renewable energy sources, such as hydro and wind power.

Table 4. Mineable crude bitumen reserves in Alberta for areas under active development as of December 31, 2013 (AER, 2014).

<table>
<thead>
<tr>
<th>Development</th>
<th>Project area* (ha)</th>
<th>Initial mineable volume in-place (10^6 m³)</th>
<th>Initial established reserves (10^6 m³)</th>
<th>Cumulative production (10^6 m³)</th>
<th>Remaining established reserves (10^6 m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRL Horizon</td>
<td>28 482</td>
<td>834</td>
<td>537</td>
<td>26</td>
<td>511</td>
</tr>
<tr>
<td>Fort Hills</td>
<td>17 864</td>
<td>556</td>
<td>382</td>
<td>0</td>
<td>382</td>
</tr>
<tr>
<td>Imperial Kearl</td>
<td>19 674</td>
<td>1 324</td>
<td>872</td>
<td>1.4</td>
<td>871</td>
</tr>
<tr>
<td>Shell Muskeg River</td>
<td>13 581</td>
<td>672</td>
<td>419</td>
<td>66</td>
<td>333</td>
</tr>
<tr>
<td>Shell Jackpine</td>
<td>7 958</td>
<td>361</td>
<td>222</td>
<td>18</td>
<td>204</td>
</tr>
<tr>
<td>Suncor</td>
<td>19 155</td>
<td>990</td>
<td>687</td>
<td>331</td>
<td>356</td>
</tr>
<tr>
<td>Syncrude</td>
<td>44 037</td>
<td>2 071</td>
<td>1 306</td>
<td>468</td>
<td>838</td>
</tr>
<tr>
<td>Total Joslyn North</td>
<td>8 604</td>
<td>274</td>
<td>139</td>
<td>0</td>
<td>139</td>
</tr>
<tr>
<td>Total</td>
<td>159 355</td>
<td>7 100</td>
<td>4 564</td>
<td>930</td>
<td>3 634</td>
</tr>
</tbody>
</table>

* The project areas correspond to the areas defined in the project approval.

Starting in 2010, the downward trend of total crude oil production in Alberta was reversed, with light-medium crude oil production increasing due to technological advances, such as horizontal, multi-stage drilling with hydraulic fracturing and/or acidization. This resulted in an increase of total crude oil production by 5% in 2013 (AER, 2014). Along with this technologically-driven increase in crude oil production, the ERCB (Rokosh et al. 2012; Beaton et al. 2013) conducted a regional resource assessment of crude oil in six of Alberta’s shale and siltstone-dominated formations, that pointed to a vast potential (best in-place estimates of 423.6 billion BBLs [67.3 billion m³] of crude oil; 3,424 trillion cubic ft [97 trillion m³] of natural gas; and 58.6 billion
BBLs [9.3 billion m3] of natural gas liquids) in tight formations, which until now were considered uneconomic due to challenges related to production from these low-permeability reservoirs. To date, these hydrocarbon resource estimates identify other (non-bitumen) unconventional resources in the province; but, how these relate to the total energy resource endowment of the province is not known until it is addressed if they are technologically or economically feasible to produce at large scales with existing or near-future resource technologies.

Table 5: In situ crude bitumen reserves in Alberta for areas under active development as of December 31, 2013 (AER, 2014)

<table>
<thead>
<tr>
<th>Development</th>
<th>Initial volume in-place (106 m3)</th>
<th>Recovery factor (%)</th>
<th>Initial established reserves (106 m3)</th>
<th>Cumulative productionb (106 m3)</th>
<th>Remaining established reserves (106 m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace River Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial projects</td>
<td>63.7</td>
<td>40</td>
<td>25.5</td>
<td>11.8</td>
<td>13.7</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>375.0</td>
<td>10</td>
<td>37.5</td>
<td>17.6</td>
<td>19.9</td>
</tr>
<tr>
<td>Subtotald</td>
<td>438.7</td>
<td>63.0</td>
<td>29.4</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>Athabasca Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial projects</td>
<td>391.8</td>
<td>50</td>
<td>195.9</td>
<td>149.2</td>
<td>46.7</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>1,026.2</td>
<td>5</td>
<td>51.3</td>
<td>25.4</td>
<td>25.9</td>
</tr>
<tr>
<td>Enhanced recovery schemese</td>
<td>(289.0)*</td>
<td>10</td>
<td>28.9</td>
<td>26.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Subtotald</td>
<td>1,418.0</td>
<td>276.1</td>
<td>200.7</td>
<td>75.4</td>
<td></td>
</tr>
<tr>
<td>Cold Lake Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial (CSS)f</td>
<td>1,212.8</td>
<td>25</td>
<td>303.2</td>
<td>256.0</td>
<td>47.2</td>
</tr>
<tr>
<td>Thermal commercial (SAGD)g</td>
<td>33.8</td>
<td>50</td>
<td>16.9</td>
<td>4.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>6,257.5</td>
<td>5</td>
<td>312.9</td>
<td>106.0</td>
<td>206.9</td>
</tr>
<tr>
<td>Subtotald</td>
<td>7,504.1</td>
<td>633.0</td>
<td>366.6</td>
<td>266.4</td>
<td></td>
</tr>
<tr>
<td>Totalc</td>
<td>9,360.8</td>
<td>972.1</td>
<td>596.7</td>
<td>375.4</td>
<td></td>
</tr>
</tbody>
</table>

a Thermal reserves are reported only for lands on which thermal recovery is approved and drilling development has occurred.

b Includes amendments to production reports.

c Any discrepancies are due to rounding.

d Schemes currently on polymer injection or waterflooding in the Brintnell-Pelican area. Previous primary production is included under primary recovery schemes.

e The in-place number is that part of the initial volume available for primary recovery schemes that will see incremental production due to polymer injection or waterflooding.

f Cyclic steam stimulation projects.

g Steam-assisted gravity drainage projects.
Investment in expansion of existing mines and start up of new mine and SAGD projects is continuing at pace. Four new projects have been announced for 2014 (World Oil, February 2014) that involve a total C$43.4 billion in capital investment and that will add a projected 742,000 bopd in new production capacity by 2015, or shortly thereafter.

In situ oil sands production continues to be the largest growth area. Compared to surface mining, *in situ* operations, such as SAGD, involve lower capital costs, a smaller “footprint” and reduced environmental impacts. A modest increase in both conventional and tight-formation development is expected, largely due to improvements in multi-stage hydraulic fracturing from horizontal wells that are targeting these previously uneconomic, but potentially large, resources. Alberta Energy Regulator predicts that *in situ* production will overtake that from surface mining in 2015.

Resources and Production – Venezuela

The Faja Petrolifera del Orinoco (Orinoco Heavy Oil Belt) in eastern Venezuela is the world’s single largest oil accumulation. The total estimated oil in-place is 1.2 trillion barrels [190 billion m3] of which 310 billion barrels [49.3 billion m3] is considered technically-recoverable (Villarroel et al., 2013). The Faja is 55,314 km2 [21,357 mi2] in size and extends 600 km in an east-west arcuate band that is up to 90 km wide (Fig. 5). The deposit lies immediately north of the Orinoco and Arauca Rivers in the southern portions of the states of Guarico, Anzoategui and Monagas. The Faja follows the extreme up-dip edge of the foreland basin of the young Serrania del Interior thrust belt, the source of the oil, were Neogene-age sediments overlie the crystalline basement of the Guayana Shield. To the north, in the foothills of the Serrania del Interior, there are numerous conventional oil fields, the majority in structural traps within the thrust belt.

Extra-heavy oil having an average API gravity of 8.5º is reservoired in stratigraphic traps within the highly porous and permeable sands of the lower and middle Miocene Oficina Formation. These sands were carried off the Guayana Shield by river systems flowing north and northeastward to be deposited in fluvio-deltaic and esturine complexes on the south rim of the foreland basin (Martinius et al., 2013). Upper Miocene marine shales of the Freites Formation form the top seal to the Faja oil accumulation. The net thickness of oil-impregnated sands is
highest within the paleo-deltas (Fig.6), giving rise to a highly irregular distribution of resource richness within the Faja.

Figure 5: The Faja Petrolífera del Orinoco in eastern Venezuela (light green) showing the four production units (red text), four current production projects (white text), and pipelines connecting the projects to the Jose upgrading facility on the coast. (Villarroel et al., 2013).

At present, there are four active heavy oil recovery projects operating in the Faja (Fig. 5), each begun in successive years between 1998 and 2001. Petroleos de Venezuela (PDVSA), the sole owner/operator of Petroanzoategui and is the senior joint-venture partner in the other three projects, usually with a partner as the operator: BP in Petromonagas, Chevron in Petropiar, and Total with Statoil in Petrocedeño. In what is referred to as the “first stage” of development, the projects are now producing collectively about 640,000 bopd using cold production methods (Villarroel et al., 2013). These methods are possible due to the highly porous and permeable properties of the reservoir sands (Fig. 6) and the gas-charged and foamy character of the extra-heavy oil. The dissolution of dissolved natural gas in the oil during production aids in propelling the oil from the sand and towards the wellbore. The foaming of the oil and reservoir temperatures of about 50ºC, help overcome its viscosity, which is on the order of thousands of centipoise (Fig. 6). The oil is extracted from horizontal wells as long as 1.5 km with the aid of
down-hole progressive cavity pumps and multi-phase pumps at the well head. A major challenge is the optimal placement of the long horizontal wells in these complex heterogeneous fluvial-deltaic sands (Martinius et al., 2013).

Figure 6: Map showing the net oil sand thickness, which approximates the distribution of oil sand richness. The currently active development projects are within or proximal to the net oil sand thicks. The table lists the average reservoir and oil properties of the deposit. Source: Villarroel et al. (2013).

To enhance production, a 50º API naphtha diluents is commonly injected into the horizontal wells to further decrease viscosity. The recovery factor for cold production is about 10%. The naphtha-charged oil is transported about 200 km to the Jose upgrading facility on the Caribbean coast (Figs. 5 and 7). Here the naphtha is separated from the oil and returned to the projects via dedicated diluent pipelines (Fig. 6). The oil is upgraded in one of four delayed coking units to a 32º API syncrude that is exported as “Zuata Sweet”. As the projects prepare for the next phase of development, a variety of established EOR technologies are being tested in pilots, including thermal methods (SAGD, CSS) and reservoir flooding using polymer-viscosified water.
In November 2005 PDVSA began the “Magna Reserva” study to determine and certify the remaining oil reserves in each of 28 blocks delineated in the four operating regions (Fig. 5). This evaluation is ongoing, but early reports point to the possibility of as much as 100 billion barrels being added to proven reserves. To increase the rate of extra-heavy oil production by expanding operating areas, PDVSA has entered into joint-venture partnerships with various national or quasi-national oil companies: Gasprom and Lukoil (Russia), CNPC (China), Petrobras (Brazil), Rapsol (Spain), ENI (Italy), ONGC (India), PetroPars (Iran), and PetroVietnam. However, at present more heavy crude is being produced than can be processed in the Jose upgraders, which are more than a decade old. The lack of investment funds have prevented PDVSA from adequately maintaining and expanding the pipelines and upgrading facility.

Resources and Production – United States
The goal of the United States to move towards greater energy independence could include production from existing U.S. oil sands deposits using surface mining or in-situ extraction. Current U.S. bitumen production is mainly for local use on roads and similar surfaces. This is due mainly to the different character and scale of the deposits compared to Canada and
Venezuela, but in part it is because, outside of California and Alaska, the U.S. has not developed the infrastructure required to produce oil sands as a fuel source. Schenk et al. (2006) compiled total measured, plus speculative, estimates of bitumen in-place of about 54 billion barrels [8.6 billion m\(^3\)] for 29 major oil sand accumulations in Alabama, Alaska, California, Kentucky, New Mexico, Oklahoma, Texas, Utah, and Wyoming (Table 6). However, these older estimates of total oil sand resources provide only limited guidance for commercial, environmentally-responsible development of the oil sand deposits. Additionally, the estimates do not factor in commercially-viable heavy oil resources. The resources in each of the states have distinct characteristics that influence current and future exploitation.

Table 6: Previous estimates of bitumen-heavy oil resource-in-place, measured and total including speculative, in the United States.

<table>
<thead>
<tr>
<th>State</th>
<th>No. deposits</th>
<th>(^\circ \text{API range})</th>
<th>Measured, MMB</th>
<th>Total, MMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utah</td>
<td>10</td>
<td>-2.9 to 10.4</td>
<td>11,850</td>
<td>18,680</td>
</tr>
<tr>
<td>Alaska</td>
<td>1</td>
<td>7.1 to 11.5</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Alabama</td>
<td>2</td>
<td>na</td>
<td>1,760</td>
<td>6,360</td>
</tr>
<tr>
<td>Texas</td>
<td>3</td>
<td>-2.0 to 7.0</td>
<td>3,870</td>
<td>4,880</td>
</tr>
<tr>
<td>California</td>
<td>6</td>
<td>0.0 to 17.0</td>
<td>1,910</td>
<td>4,470</td>
</tr>
<tr>
<td>Kentucky</td>
<td>4</td>
<td>10</td>
<td>1,720</td>
<td>3,410</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1</td>
<td>12</td>
<td>130</td>
<td>350</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2</td>
<td>na</td>
<td>120</td>
<td>145</td>
</tr>
</tbody>
</table>

(Data from Schenk and others, 2006)

California has the second largest heavy oil reserves in the world, second only to Venezuela (Hein 2013). California’s oil fields, of which 52 have reserves greater than 100 million barrels [15.9 million m\(^3\)], are located in the central and southern parts of the state (Fig. 8). As of 2011, the proved reserves were 3,099 million barrels [478.4 million m\(^3\)], nearly 65% of which were in the southern San Joaquin basin (U.S. Energy Information Administration, 2013). Most of the fields were discovered and put into primary production in the period 1890-1930. However, with the introduction of water flooding, thermal recovery, and other EOR technologies starting in the 1950s and 1960s, oil recoveries improved dramatically and the proved reserves increased several fold (Tennyson 2005).
Nearly all of the oil is sourced from organic-rich intervals within the thick Miocene-age Monterey diatomite, diatomaceous mudstone and carbonate. Due to a combination of Type IIS kerogen, modest burial and thermal heating, and generally shallow depths of oil pools, the oil tends to be heavy and relatively viscous. These are thermally immature, partially biodegraded oils. Approximately 40% of the oil is produced by steam flooding, cyclic steam stimulation, or other thermal recovery methods. Thermally-produced oil comes mainly from fields in the San Joaquin basin (Fig. 8, Table 7). In general, the reservoirs are poorly- or un-consolidated sandstones intercalated within or overlying the Monterey Formation. However, the South Belridge field produces from diagenetically-altered, highly fractured diatomite. The Coalinga
field produces from sandstones in the Temblor Formation underlying the Monterey Formation; the source rock is the Middle Eocene Kreyenhagen Formation, which is unconformably overlain by the Temblor Formation.

The larger thermal oil fields (Table 7) have experienced oil production declines in the five-year period 2008-2012 on the order of 11.2% (Kern River) to 24.4% (Cymric). Smaller fields have had little or no declines. The young (1952) San Ardo field immediately west of the San Joaquin basin (Fig. 7) has actually doubled production in this period. A small portion of the supergiant Wilmington field in the Los Angeles basin was produced by steam flood using two pairs of parallel horizontal injector and producer wells. The project was stopped because of surface subsidence problems. With the exception of this successful pilot, air quality issues associated with steam generation have limited the expansion of thermal recovery methods in the Los Angeles basin. The California heavy oils are exceptional in that they sell with little or no discount compared to WTC. Since 2011, the price of benchmark Midway-Sunset 13° API crude has remained near $100/barrel (EIA, Domestic Crude Oil First Purchase Price, 3/3/2014).

In addition to the heavy oil accumulations that are being produced, California has numerous shallow bitumen deposits and seeps that are not currently exploited. The total resource is estimated to be as large as 4.7 billion barrels [747.3 million m³] (Kuuskraa et al. 1986). Five of the six largest tar sand deposits are in the onshore Santa Maria basin (central Coastal zone in Fig. 7), covering a total area of over 60 square miles [155 km²]. In general, the deposits are in the Sisquoc Formation, which overlies and is a seal to the oil-generating Monterey Formation. An additional major deposit is in the onshore Ventura basin (extreme southeast of the Coastal zone). Minor tar sand deposits and surface seeps are scattered throughout the oil-producing areas of California normally overlying or up-dip from known oil fields.

During the past decade, oil production in California has steadily declined (U.S. Energy Information Administration, 2014). The rate of decline is being slowed, and may be reversed, through the application of fully integrated reservoir characterization and improved recovery technologies that are resulting in higher recovery factors (Dusseault 2013), up to 70-80% in some fields.
Table 7: California oil fields produced by thermal recovery methods. The fields are arranged by 2013 total oil yield; the volume of associated gas is indicated by the gas-oil ratio (GOR) in units of SCF gas/barrels oil. Also shown are the characteristic oil gravity, oil viscosity, and reservoir or in-situ oil temperature of the fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>2013 Oil, MMBO</th>
<th>2013 GOR</th>
<th>°API</th>
<th>Oil viscosity, cp</th>
<th>Oil temp., °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midway-Sunset</td>
<td>28.820</td>
<td>172</td>
<td>11 to 14</td>
<td>1000 - 10000</td>
<td>85 - 130</td>
</tr>
<tr>
<td>Kern River</td>
<td>25.739</td>
<td>2</td>
<td>13</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>South Belridge</td>
<td>23.331</td>
<td>372</td>
<td>13 to 14</td>
<td>1500 - 4000</td>
<td>95</td>
</tr>
<tr>
<td>Cynric</td>
<td>14.459</td>
<td>228</td>
<td>11 to 14</td>
<td>1000 - 2000</td>
<td>95 - 105</td>
</tr>
<tr>
<td>Lost Hills</td>
<td>10.763</td>
<td>839</td>
<td>12.7 to 13.9</td>
<td>1500 - 4000</td>
<td>75 - 82</td>
</tr>
<tr>
<td>San Ardo</td>
<td>7.232</td>
<td>155</td>
<td>11 to 12</td>
<td>1000 - 3000</td>
<td>125 - 130</td>
</tr>
<tr>
<td>Coalinga</td>
<td>5.524</td>
<td>41</td>
<td>9 to 13</td>
<td>2000 - 28000</td>
<td>84 - 105</td>
</tr>
<tr>
<td>Poso Creek</td>
<td>2.798</td>
<td>4</td>
<td>13</td>
<td>2800</td>
<td>110</td>
</tr>
<tr>
<td>Kern Front</td>
<td>3.447</td>
<td>0</td>
<td>13 to 14.8</td>
<td>1500</td>
<td>80 - 95</td>
</tr>
<tr>
<td>McKittrick</td>
<td>2.513</td>
<td>824</td>
<td>10 to 12</td>
<td>13000 - 51000</td>
<td>83</td>
</tr>
<tr>
<td>Placerita</td>
<td>0.942</td>
<td>0</td>
<td>13</td>
<td>10000</td>
<td>90</td>
</tr>
<tr>
<td>Edison</td>
<td>0.790</td>
<td>6</td>
<td>14</td>
<td>2000</td>
<td>90</td>
</tr>
<tr>
<td>North Antelope Hills</td>
<td>0.243</td>
<td>83</td>
<td>14</td>
<td>1400</td>
<td>80</td>
</tr>
</tbody>
</table>

Data from California DOGGR and Oil & Gas Journal, April 2, 2012

Alaska’s heavy oil and bitumen deposits on the North Slope are very large (24 to 33 billion barrels, or 3.8 to 5.2 billion m³) and they hold promise for commercially-successful development. Since early 1980s (Werner 1987), two very large, shallow heavy oil impregnated sands have been known to overlie the Kuparuk River field and underlie a 1,800 ft [549 m] thick permafrost (Fig. 8). These are the Ugnu Sands (8-12 °API) at depths of 2,000-5,000 ft [610-1,524 m] and the West Sak Formation (16-22 °API) at 2,300-5,500 ft [701-1,676 m]. The size of the deposits is well defined with the numerous wells tapping the underlying conventional oil fields. For the Lower Ugnu Sands and West Sak Formation the resources are 12-18 billion bbls [1.9-2.9 billion m³] and 12 billion bbls [1.9 billion m³], respectively. The reservoirs are fluvial-deltaic sands deposited during the Late Cretaceous-earliest Paleocene in the north and northeast prograding Brooks Range coastal plain (Hulm et al. 2013).

Production of viscous (50-5000 cp) oil from the West Sak pools began in the early 1990s, reaching the current level of 4,000-5,000 bbls [636-795 m³] of oil per day in 2004. To date, over 100 million bbls [15.9 million m³] have been recovered from the formation using a combination of vertical wells and water flood. The heavy oil in the Ugnu Sands presents a much greater
technical challenge due to its higher viscosity (5,000 to over 20,000 cp) of and the friability of the reservoir sand. At its Milne Point S-Pad Pilot, BP Alaska is testing two different recovery strategies in the Ugnu Sands. One pilot is pumping from the heel of a cased and perforated horizontal well, which early in 2013 successfully produced heavy oil at a rate of 350 bbls [55.6 m³] of oil per day (Newsminer, January 16, 2013). The other is a test of the CHOPS (‘cold heavy oil production with sand’) recovery process (Young et al. 2010) with results not yet announced.

Figure 9: Location of shallow, heavy oil accumulations on the North Slope of Alaska. Heavy oil deposits overlie the Kuparuk field and parts of the Prudhoe and Milne Point fields and occur in sands within the Ugnu, West Sak and Schrader Bluff formations. Source: Gordon Pospisil, BP Exploration (Alaska) Inc., January 6, 2011.

Utah’s bitumen and heavy oil deposits are found throughout the eastern half of the state (Schamel 2009; Schamel 2013a, b). In northeast Utah, the largest accumulations are located along the southern margin of the Uinta Basin underlying vast portions of the gently north-dipping East and West Tavaputs Plateaus. This highland surface above the Book and Roan Cliffs
on either side of the Green River (Desolation) Canyon is supported by sandstone and limestones of the Green River Formation (lower Eocene). Here the resource-in-place is at least 10 billion barrels [1.6 billion m3], nearly all of it reservoired in fluvial-deltaic sandstone bodies within the lower member of the Green River Formation. On the northern margin of the Uinta Basin, heavy oil occurs in a variety of Mesozoic and Tertiary reservoirs on the hanging wall of the Uinta Basin Boundary Fault. The proven resource is less than 2.0 billion bbls [0.32 billion m3], but the potential for additional undiscovered heavy oil and bitumen is great. In both areas, the source of the heavy oil is organic-rich lacustrine calcareous mudstone in the Green River Formation. These naphthenic oils have API gravities in the 5.5 to 17.3º range, are only weakly biodegraded in the subsurface, and are sulfur-poor (0.19 to 0.76 wt%). The known oil sand reservoirs are lithified and oil-wet.

New resource-in-place estimates for the major deposits are determined from the average volume of bitumen/heavy oil measured in cores distributed across the deposit, as delineated by wells and surface exposures (Table 8). The deposits on the south flank of the basin are extensive and large, but the actual concentrations (richness) of resource are small. For the vast P. R. Spring–Hill Creek deposit, the average richness is just 25.9 thousand bbls [4.1 thousand m3] per acre; it is only slightly higher for the entire Sunnyside accumulation west of the Green River. However, a small portion of the Sunnyside deposit having unusually thick reservoir sands within an monoclinal trap has a measured average richness of 638.3 thousand bbls [101.2 thousand m3] per acre. The two principal deposits on the north flank of the basin, Asphalt Ridge and Whiterocks, are relatively small, but they contain high concentrations of heavy oil (Table 8).

Table 8: Estimated resource size and richness of the principal heavy oil-bitumen deposits in Utah.

<table>
<thead>
<tr>
<th>Bitumen-heavy oil deposit</th>
<th>Resource estimate</th>
<th>Areal extent</th>
<th>Richness, average</th>
<th>API gravity</th>
<th>Reservoir unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. R. Spring - Hill Creek</td>
<td>7,790 MMB</td>
<td>470 square miles</td>
<td>25.9 Mil/acre</td>
<td>5.9 to 13.8</td>
<td>Lower Green River ss</td>
</tr>
<tr>
<td>Sunnyside</td>
<td>3,500 - 4,000 MMB</td>
<td>122 square miles</td>
<td>45 - 51 Mil/acre</td>
<td>7.1 to 10.1</td>
<td>Lower Green River ss</td>
</tr>
<tr>
<td>Sunnyside 'core'</td>
<td>1,160</td>
<td>2.7 square miles</td>
<td>638.3 Mil/acre</td>
<td></td>
<td>Lower Green River ss</td>
</tr>
<tr>
<td>Asphalt Ridge</td>
<td>1,380</td>
<td>15 square miles</td>
<td>132.9 Mil/acre</td>
<td></td>
<td>Mesaverde ss (U Cret.)</td>
</tr>
<tr>
<td>Whiterocks</td>
<td>98</td>
<td>0.45 square miles</td>
<td>338 Mil/acre</td>
<td>11.4 to 13.5</td>
<td>Navajo ss (Tr.-Jr.)</td>
</tr>
<tr>
<td>Tar Sand Triangle</td>
<td>4,250 - 5,150 MMB</td>
<td>198 square miles</td>
<td>33.5 - 40.6 Mil/acre</td>
<td>-3.6 to 9.6</td>
<td>White Rim Ss. (L Perm)</td>
</tr>
<tr>
<td>TST 'core'</td>
<td>1,800 - 2,450 MMB</td>
<td>30 - 52 square miles</td>
<td>67.7 - 73.9 Mil/acre</td>
<td></td>
<td>White Rim Ss. (L Perm)</td>
</tr>
</tbody>
</table>

Data from Schamel (2013a) and Schamel (2013b)
In the southeast quadrant of Utah, there are numerous shallow bitumen accumulations on the northwest and west margins of the Pennsylvanian-Permian Paradox Basin. The deposits are hosted in rocks of late Paleozoic and early Mesozoic age. With the exception of the Tar Sand Triangle and Circle Cliffs deposits, most accumulations are small and/or very lean. Normally, the oils are heavier than 10º API and highly biodegraded. In contrast to the Uinta Basin deposits, this bitumen is derived from a marine source rock and is aromatic with high sulfur content (1.6 to 6.3 wt.%), but low nitrogen (0.3 to 0.9 wt.%).

Bitumen in the Tar Sand Triangle deposit, located south of the junction of the Green River with the Colorado River, is reservoired in a several-hundred-foot-thick eolian sandstone of Lower Permian age. Across an area of 84 square miles [217 km²], the thickness of bitumen-impregnated sandstone exceeds 100 ft (30 m). The API gravity of the bitumen is less than 8º at the surface and just over 10º in the subsurface. Schamel (2013b) estimated the total in-place bitumen resource is between 4.25 and 5.15 billion bbls [0.67 and 0.82 billion m³] in a deposit just less than 200 square miles [518 km²] in size. However, at a resource threshold equal to or greater than 60 thousand bbls [9.5 thousand m³] per acre, the resource ranges between 1.30 to 2.46 billion bbls [0.21 to 0.39 billion m³] in an area of 30 to 52 square miles [78 to 135 km²], respectively. Approximately half of the deposit is in the Glen Canyon National Recreation Area, where exploitation could be severely limited. The Circle Cliffs deposit, with an estimated 1.73 billion bbls [0.27 billion m³], lies completely in the Capitol Reef National Park and Grand Staircase-Escalante National Monument, areas off limits to development.

The Uinta Basin heavy oils and bitumens are highly viscous; the Tar Sand Triangle bitumen is only slightly less viscous. Both groups of oils have viscosity that is orders of magnitude greater than that of the 13 ºAPI heavy oil produced by steam flood in the southern San Joaquin Basin, California. So far, the Utah ‘tar sands’ have resisted attempts at commercial development. However, starting in 2015 a U.S. Oil Sands pilot at Seep Ridge in the P.R. Springs deposit is designed to produce liquids from surface-mined oil sand using a closed-loop solvent extraction process.
On March 22, 2013, BLM Principal Deputy Director Neil Kornze signed the Record of Decision (ROD) for the Oil Shale and Tar Sands Programmatic EIS, finalizing the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement (OSTS PEIS) that was released in November 2012. The ROD opens 130,000 Federal acres (52,609 ha) of designated tar sands in Utah for leasing and development. Federal lands in adjacent Wyoming and Colorado, also covered by this ROD for oil shale leasing, hold no oil (tar) sand deposits. Further information is available at: http://ostseis.anl.gov/documents/.

The Southwest Texas Heavy Oil Province (Ewing, 2009) is located on the northeastern margin of the Maverick Basin, northeast of Eagle Pass. Bitumen is hosted in early to middle Campanian carbonate grainstone shoals (Anacacho Formation) and in late Campanian-Maastrichtian sandstone (San Miguel, Olmos, and Escondido Formations). The largest accumulation is in the San Miguel ‘D’ Sandstone with a reported 3.2 billion bbls [0.51 billion m³] in an area of 256 square miles [663 km²] (Kuuskraa et al., 1987). The bitumen is highly viscous and sulfur-rich (10%) with an API gravity of -2º to 10ºAPI. The average resource grade of the deposit is less than 20 thousand bbls [3.2 thousand m³] per acre. Only a very small part of the deposit has a grade in excess of 40 thousand bbls [6.4 thousand m³] per acre. In the late 1970s and early 1980s, Exxon and Conoco produced from pilot plants at this deposit 417,673 bbls [66,405 m³] of bitumen, but since then there has been no successful exploitation of the deposit. The shallow Anacacho deposit contains an estimated 550 million bbls [87.4 million m³] resource in an area of 36.6 square miles [94.8 km²]. The average resource grade is 23.5 thousand bbls [3.7 thousand m³] per acre. The deposit has been mined since 1888 for asphalyclic road paving.

In northwest Alabama, bitumen-impregnated Hartselle Sandstone (Mississippian) occurs sporadically along a 70 mile [113 km]- long belt extending east-southeast across the Cumberland Plateau from near the Alabama-Mississippi border to the front of the Appalachian thrust belt. To the south of this outcrop belt, bitumen is observed in wells penetrating the Hartselle Sandstone. The Alabama Geological Survey (Wilson, 1987) speculated that there could be 7.5 billion bbls [1.2 billion m³] of bitumen in an area of 2,800 square miles [7,252 km²], of which 350 million bbls [55.6 million m³] is at depths shallower than 50 feet [15 m]. Despite the large potential
resource, the deposit is lean, with an average bitumen-impregnated interval of 14 feet [4.3] and
an average richness of only 4.3 thousand bbls [0.68 thousand m3] per acre.

The heavy oil deposits of western Kentucky form an arcuate belt along the southeast margin of
the Illinois Basin. The heavy oil is hosted in fluvial sandstones, some filling paleovalleys, of Late
Mississippian-Early Pennsylvanian age (May, 2013). The area is crossed by the east-west
trending Rough Creek and Pennyrile fault systems that aid in trapping the heavy oil pools and
may have been the conduits for eastward oil migration from hydrocarbon kitchens at the juncture
of Illinois, Indiana and Kentucky. The largest deposit (2.1 billion bbls; or 3.3 billion m3) extends
in a zone 5 to 10 miles [8 to 16 km] wide and 50 miles [80 km] long situated north of Bowling
Green. This deposit, hosted in the Clifty Sandstone, generally is lean with thickness of the oil-
impregnated sands from a few to just over 50 feet (Noger, 1999). The API gravity of the heavy
oil is 10º. Other deposits are considerably smaller and have API gravities of 10º to 17º.

Kentucky’s oil sand total oil-in-place is estimated to be 3.42 billion bbls [0.54 billion m3]
(Noger, 1999). At present, there is no commercial exploitation of the deposits for liquid
hydrocarbons, although at least one operator has announced plans to do so.

Oil sand accumulations in east-central New Mexico have total in-place measured and speculative
resources of 130 million bbls [20.6 million m3] and 190 to 220 million bbls [30.2 to 35 million
m3], respectively (IOCC, 1983; Schenk et al., 2006). The oil accumulations are within Triassic
Santa Rosa Sandstone at depths of less than 2,000 ft [3,219 m]. (Broadhead, 1984). Speculative
in-place oil sand resources total 800 million bbls [127.2 million m3] for Oklahoma (IOCC, 1983;
Schenk et al., 2006). Oil sands are located mostly within Ordovician Oil Creek Formation
sandstones and Viola Group limestones, with lesser accumulations in Mississippian through
(B. J. Cardott, compiler) can be downloaded from

http://www.ogs.ou.edu/fossilfuels/pdf/bibOkAsphalt7_10.pdf. In-place resources for two oil
sand accumulations in Wyoming total 120 million bbls [19 million m3] measured and 70 million
bbls [11.1 million m3] speculative (IOCC, 1983; Schenk et al., 2006). The larger accumulation is
within Pennsylvanian-Permian sandstones of the Minnelusa Formation in northeastern

AAPG EMD Oil Sands Committee Commodity Report – November 2014
Wyoming, and the smaller is within Cretaceous sandstones in the Wind River Basin, central Wyoming (IOCC, 1983).

Resource Technology

As of December, 2013, Alberta bitumen reserves under active development (mainly by surface mining, compare cumulative production in Tables 3 and 4) accounted for only 5.4% of the remaining established reserves of 167 billion barrels [2.66 billion m3] since commercial production began in 1967 (Table 2) (AER, 2014). Figure 9 shows the production in 2013 for each oil sands area for surface mining and in-situ recovery. In 2013, in-situ production from all three oil sand areas in Alberta grew by 11.7%, compared with a 5.0% increase in production for mined bitumen. *In-situ* production overtook mined production for the first time in 2012, continued to exceed mined production in 2013 and is expected to continue going forward (AER, 2014).

![Figure S3.1: Production of bitumen in Alberta, 2013 (103 m3/day)](image)

Figure 9: Production of bitumen in Alberta in 2013 (AER, 2014)
Unlocking the huge potential of the remaining bitumen resources in Alberta will require enhancing other in-situ technologies. The most commonly used in-situ technologies are SAGD and CSS. SAGD and CSS utilize considerable energy and water to produce steam; also required are good permeability (both vertical and horizontal), relatively thick pay zones (> 10 m; 32.8 ft), and an absence of barriers (cemented zones, thick laterally-continuous shales) and the lack of significant top/gas, top/lean or bottom water thief zones. Generally the cross-bedded sands of lower point bar depositional environments are characterized by vertical permeability ranging from 2 to 6 D. Associated inclined heterolithic stratification (IHS) from upper point bar deposits exhibits a 2 to 3 order of magnitude decrease in permeability, and siltstone in abandoned channel and point bar strata also exhibits a 2 to 3 order-of-magnitude decrease in permeability (Strobl et al., 1977; Strobl, 2007, Strobl, 2013). Depositional heterogeneities at vertical and lateral scales influence bitumen recovery from in-situ processes.

A comprehensive, two-volume edition book entitled: “Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands” (Masliyah et al., 2011) focuses on the extraction of bitumen from oil sands mainly using surface mining methods, and also includes a chapter on in-situ processes. Volume I covers the basic scientific principles of bitumen recovery, froth treatment, diluents recovery, and tailings disposal; Volume II is devoted to industrial practices (editor, Jan Czarnecki, at jc7@ualberta.ca). Some of the focus of recent in-situ technology and advances includes:

- Integration of future oil sands technology with that of emerging oil shale co-production in the western United States.
- New developments concerning in-situ recovery and underground refining technologies for oil sands in western Canada include underground combustion and refining.
- Use of Cold Heavy Oil Production with Sand (CHOPS) as a specialized primary type of production where progressive cavity pumps assist in lifting bitumen and sand to the surface, and utilize this sand production to create wormholes in the strata to increase permeability in the reservoir. Liberatore et al. (2012) examined alternative seismic methods for in-situ monitoring of CHOPS heavy oil recovery. Seismic modeling
indicates that signature of wormholes developed during CHOPS production can be detected.

- Search for alternative sources of energy for steam production, including the use of nuclear energy in conjunction with in-situ oil sands production plants (Peace River, Alberta).
- Further development and integration of technologies that include solvent co-injection, electro-magnetic heating, wedge (in-fill) wells, in-situ combustion, hot-solvent gravity drainage, Supercritical Partial Oxidation (SUPOX), and various hybrid developments, including CO₂ flooding (Rudy Strobl, Nov. 14, written communication).

Critical technology needs include enhancing current methods and developing new more-environmentally-friendly methods of extraction, production, and upgrading of oil sands.

Emphasis of surface mining operations is on reclamation of tailings and consolidated tailings, and on re-vegetation of open-pit mine sites. In early February 2009, the Energy Resources Conservation Board (ERCB) issued Directive 074 that outlines new cleanup rules and harsh penalties for non-compliance regarding tailings ponds regulations for the oil sands areas. This directive resulted from the ERCB acknowledgment that, although operators invested heavily in improved tailings reduction strategies, targets set out in the original development applications have not been met. Firm performance criteria are defined for reclaiming the tailings ponds, with performance inspections, and subsequent penalties due to neglect, omission, or commission.

Most of the operations extracting bitumen resources in-situ utilize thermal technologies, such as Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS). Because there is significant co-production of greenhouse gases with bitumen production and upgrading, critical technology needs involve research into: 1) alternative sources of heat for generation of steam (e.g., geothermal, nuclear, burning of slag); 2) methods to reduce the viscosity of the bitumen so it will flow to the well bore or through pipelines more easily (such as use of diluents, catalysts, microbial and nanotechnology); 3) underground in-situ extraction, refining, and upgrading; and 4) co-sequestration of greenhouse gases by injection into abandoned reservoirs or other deep geologic sites. There was in the past an excess supply of produced sulfur, above what was used in agricultural and other markets. Excess sulfur is stockpiled from bitumen and sour gas.
production and refining. Produced and stored sulfur is sold to various markets, the largest being China, mainly converted to sulfuric acid for use in manufacturing phosphate fertilizer (ERCB, 2012).

In California, where the principal thermal recovery methods currently are steam flood and CSS, an emphasis is being placed on increasing in-situ recovery factors through fully integrated reservoirs characterization and improvements in thermal recovery technologies to make them effective, as well as more energy-efficient and less polluting (Dusseault, 2013). New sources of heat for steam generation are being tested. For instance, in the San Joaquin Basin two solar steam heavy oil recovery demonstration projects have been operating since 2011. One is a Chevron-Bright Source Energy partnership at the Coalinga field (Fig. 7). The other is a Berry Petroleum Co.-GlassPoint Solar collaboration, the 21Z Project, in a portion of the McKittrick field.

Environmental Issues

The primary environmental issues relate to the balance among greenhouse gas emissions and water/energy usage and the recovery, production and upgrading of bitumen. Specifically, the critical environmental focus is how to cleanly, efficiently, and safely extract, produce, and upgrade the bitumen. Goals include reducing (1) energy required to heat the water to steam and (2) CO₂ emissions. Current greenhouse gas emissions are decreasing and remaining emissions are compensated for by carbon trading and (or) CO₂ sequestration; and (3) improving the economics and processes of extraction, production and upgrading of the bitumen. Some of the areas of focus include

- Land reclamation in surface mining
- Tailings and consolidated tailings disposal and reclamation
- Bitumen upgrading and co-production of other products from tailings (such as vanadium, nickel, and sulfur)
- *In-situ* recovery
- Underground refining.

The growing size or “footprint” of the surface mines and their tailings ponds is an environmental problem needing to be addressed. To this end, Syncrude Canada Limited is preparing to build a
C$1.9 billion centrifuge plant at its Mildred Lake mine, which when operational in 2015 will reduce the waste slurry from the separators to a less-hazardous, near-dry sediment requiring far less surface storage (World Oil, February 2014).

Oil sand developers in Canada largely have been successful in reaching the goal of reducing CO₂ emissions by 45% per barrel, as compared to 1990 levels. Also in Canada, developers are legislated to restore oil sand mining sites to at least the equivalent of their previous biological productivity. For example, at development sites near Fort McMurray, Alberta, the First Nation aboriginal community, as part of the Athabasca Tribal Council, and industry have worked together to reclaim disturbed land (Boucher, 2012) and industry has reclaimed much of the previous tailings pond areas into grasslands that are now supporting a modest bison herd (about 500-700 head).

Oil Sands Publications and Technical Sessions

AAPG Studies in Geology 64 entitled “Heavy-oil and Oil-Sand Petroleum Systems in Alberta and Beyond” was released in April 2013 (bookstore@aapg.org). It is a combination hard-copy and CD publication, with 160 pages printed (3 chapters), and all 28 chapters in electronic form on the CD-ROM. This oil sands and heavy oils research includes presentations from the 2007 Hedberg conference in Banff, Canada titled “Heavy oil and bitumen in foreland basins – From processes to products.” Publication editors are Frances Hein, Dale Leckie, Steve Larter, and John Suter. The volume contains 28 chapters (Appendix A) that encompass depositional settings of oil sands and heavy oil accumulations, reservoir characterizations, geochemical characteristics of bitumen and of oil biodegradation, geologic and petroleum system modeling, petroleum reserves and resources, surface mining and in-situ production processes, such as SAGD, for accumulations in Canada, Russia, the U.S., and Venezuela, and oil sands tailings and water use management.

The 2013 SPE Western Region/Pacific Section AAPG Joint Technical Conference in Monterey, California, April 20-25, 2013 included two oral session dealing with heavy oil occurrences and recovery technologies, in addition to and numerous papers on heavy oil issues scattered through the three-day technical program
The AAPG International Conference & Exhibition in Cartagena, Colombia, September 8-11, 2013 had as a technical theme “Challenges in Heavy Oil”. The program provided for two half-day oral and two half-day poster sessions, a total of 24 papers, focused on heavy oil deposits and recovery methods in the Llanos, Putumayo, Orinoco and Alberta basins.

The SPE Heavy and Extra Heavy Oil Conference: Latin America was held September 24-26, 2014 in Medellin, Colombia. The themes of this conference were the application of innovative technologies to improving ultimate recovery and production rates, and achieving world class levels of economic viability, reliability, energy efficiency, safety in heavy and extra heavy oil fields with minimal environmental impact.

October 14-16, 2014, the Canadian Society of Petroleum Geologists and the AAPG Canada Region held the Oil Sands & Heavy Oil Symposium: A Local to Global Multidisciplinary Collaboration at the Metropolitan Conference Centre, Calgary Alberta. This narratively designed single track technical symposium included 42 technical lectures in 6 sessions, 16 core and/or poster presentations and panel discussions. The unique perspectives covered at multi-scales and multi-disciplines focused on: the global nature of the resource by linking Canadian oil sands with other global “elephants”; a multi-scale look at the deposits and reservoirs; advances in recovery technologies; caprock and reservoir integrity; and contributions to the challenges of environmental protection and social license, as well as driving prosperity and better standards of living for all through sustainable energy development.

The Heavy Oil Latin American Conference and Exhibition was held October 15-17, 2014 on Margarita Island, Venezuela. PDVSA was the organizing sponsor for this annual event.

Heavy Oil Conferences and Workshops Scheduled in 2014-2015

December 10-11, 2014 _AAPG-ACGGP Geosciences Technical Workshop “Expanding Unconventional Resources in Colombia with New Science – From Heavy Oil to Shale Gas/Shale Oil Opportunities_

Hotel Bogotá Royal, Bogota, Colombia http://www.aapg.org/career/training/workshops
February 23-25, 2015 Heavy Oil Technologies Conference 2015
Bogota, Colombia For information contact Animesh Rajput animesh@hciex.com

March 24-26, 2015 World Heavy Oil Congress 2015
Shaw Conference Centre, Edmond, Alberta http://worldheavyoilcongress.com

June 9-11, 2015 SPE Canada Heavy Oil Conference
BMO Centre at Stampede Park, Calgary, Alberta http://www.spe.org/events/cho/2015

Selected References

Bellman, L., 2009, Improvements in oil sands reservoir characterization: Presentation and panel discussion, Canadian Heavy Oil Association, Beer and Chat, Petroleum Club, Calgary, AB, May 28, 2009: office@choa.ab.ca

Keyser, T., 2009, An answer at hand? Since the dawn of oil sands mining, the search has been on for a better way to deal with tailings. One answer could prove to be biopolymer beads small enough to hold in your palm: Business article in the PEGG, May 2009, p. 25: www.apeakea.org.

Perry, G. and Meyer, R., 2009, Transportation alternatives for heavy crude and bitumen: Canadian Heavy Oil Association, Beer and Chat, Petroleum Club, Calgary, AB, April 28, 2009: office@choa.ab.ca

Strobl, R.S., 2013, Integration of steam-assisted gravity drainage fundamentals with reservoir characterization to optimize production, in, Frances J. Hein, Dale Leckie, Steve Larter, and John R. Suter, eds., Heavy-oil and oil-sand petroleum systems in Alberta and beyond: AAPG Studies in Geology 64, p. 639-654.

 http://www.eia.gov/todayinenergy/detail.cfm?id=5390

Appendices

Appendix A: Chapter List – Frances J. Hein, Dale Leckie, Steve Larter, and John R. Suter, eds., 2013, Heavy-Oil and Oil-Sand Petroleum Systems in Alberta and Beyond: AAPG Studies in Geology 64.

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heavy Oil and Bitumen Petroleum Systems in Alberta and Beyond: The Future Is Nonconventional and the Future Is Now</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Frances J. Hein, Dale Leckie, Steve Larter, and John R. Suter</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The Dynamic Interplay of Oil Mixing, Charge Timing, and Biodegradation in Forming the Alberta Oil Sands: Insights from Geologic Modeling and Biogeochemistry</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Jennifer Adams, Steve Larter, Barry Bennett, Haiping Huang, Joseph Westrich, and Cor van Kruisdijk</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Geologic Reservoir Characterization and Evaluation of the Petrocedeño Field, Early Miocene Oficina Formation, Orinoco Heavy Oil Belt, Venezuela</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Allard W. Martinius, Jan Hegner, Inge Kaas, Celia Bejarano, Xavier Mathieu, and Rune Mjøs</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The Alberta Oil Sands: Reserves and Long-term Supply Outlook</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Farhood Rahnama, Richard A. Marsh, and LeMoine Philp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Comparison of Oil Generation Kinetics Derived from Hydrous Pyrolysis and Rock-Eval in Four-Dimensional Models of the Western Canada Sedimentary Basin and Its Northern Alberta Oil Sands</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Debra K. Higley and Michael D. Lewan</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Impact of Reservoir Heterogeneity and Geohistory on the Variability of Bitumen Properties and on the Distribution of Gas- and Water-saturated Zones in the Athabasca Oil Sands, Canada</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Milovan Fustic, Barry Bennett, Stephen M. Hubbard, Haiping Huang, Thomas Oldenburg and Steve Larter</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A Regional Geologic Framework for the Athabasca Oil Sands, Northeastern Alberta, Canada</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Frances J. Hein, Graham Dolby, and Brent Fairgrieve</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>The Significance of Palynofloral Assemblages from the Lower Cretaceous McMurray Formation and Associated Strata, Surmont, and Surrounding Areas in North-central Alberta</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Graham Dolby, Thomas D. Demchuk, and John R. Suter</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Stratigraphic Architecture of a Large-scale Point-bar Complex in the McMurray Formation: Syncrude’s Mildred Lake Mine, Alberta, Canada</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Thomas R. Nardin, Howard R. Feldman, and B. Joan Carter</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>313</td>
</tr>
</tbody>
</table>
Depositional Setting and Oil Sands Reservoir Characterization of Giant Longitudinal Sandbars at Ells River: Marginal Marine Facies of the McMurray Formation, Northern Alberta Basin, Canada
Paul L. Broughton

Chapter 11. Advanced Seismic-stratigraphic Imaging of Depositional Elements in a Lower Cretaceous (Mannville) Heavy Oil Reservoir, West-central Saskatchewan, Canada
Sabrina E. Sarzalejo Silva and Bruce S. Hart

Chapter 12. Oil-saturated Mississippian–Pennsylvanian Sandstones of South-central Kentucky
Michael T. May

Chapter 13. Overview of Heavy Oil, Seeps, and Oil (Tar) Sands, California
Frances J. Hein

Chapter 14. Unconventional Oil Resources of the Uinta Basin, Utah
Steven Schamel

Chapter 15. Integrated Reservoir Description of the Ugnu Heavy-oil Accumulation, North Slope, Alaska
Erik Hulm, Greg Bernaski, Boris Kostic, Steve Lowe, and Rick Matson

Chapter 16. Overview of Natural Bitumen Fields of the Siberian Platform, Olenek Uplift, Eastern Siberia, Russia
Vladimir A. Kashirotev and Frances J. Hein

Chapter 17. Multiple-scale Geologic Models for Heavy Oil Reservoir Characterization
Clayton V. Deutsch

Chapter 18. Modeling of a Tide-influenced Point-bar Heterogeneity Distribution and Impacts on Steam-assisted Gravity Drainage Production: Example from Steepbank River, McMurray Formation, Canada
Geoffray Musial, Richard Labourdette, Jessica Franco, Jean-Yves Reynaud

Chapter 19. Modeling by Constraining Stochastic Simulation to Deterministically Interpreted Three-dimensional Geobodies: Case Study from Lower Cretaceous McMurray Formation, Long Lake Steam-assisted Gravity Drainage Project, Northeast Alberta, Canada
Milovan Fustic, Dany Cadiou, Dave Thurston, Adal Al-Dliwe, and Dale A. Leckie

Chapter 20. Spectral Decomposition in a Heavy Oil and Bitumen Sand Reservoir
Carmen C. Dumitrescu and Larry Lines

Chapter 21. Fundamentals of Heat Transport at the Edge of Steam Chambers in Cyclic Steam Stimulation and Steam-assisted Gravity Drainage
Ian D. Gates, Marya Cokar, and Michael S. Kallos

Chapter 22. Integration of Steam-assisted Gravity Drainage Fundamentals with Reservoir Characterization to Optimize Production
Rudy Strobl

Chapter 23. Screening Criteria and Technology Sequencing for In-situ Viscous Oil Production
Maurice B. Dusseault

Chapter 24. ... 669
New Progress and Technological Challenges in the Integral Development of the Faja Petrolifera del Orinoco, Venezuela
Teófilo Villarroel, Adriana Zambrano, and Rolando Garcia

Chapter 25. ... 689
Trading Water for Oil: Tailings Management and Water Use in Surface-mined Oil Sands
Randy Mikula

Chapter 26. ... 701
Potential Role of Microbial Biofilms in Oil Sands Tailings Management
Victoria Kostenko and Robert John Martinuzzi

Chapter 27. ... 725
Geothermal Energy as a Source of Heat for Oil Sands Processing in Northern Alberta, Canada
Jacek Majorowicz, Martyn Unsworth, Tom Chacko, Allan Gray, Larry Heaman, David K. Potter, Doug Schmitt, and Tayfun Babadagli

Chapter 28. ... 747
Joslyn Creek Steam-assisted Gravity Drainage: Geologic Considerations Related to a Surface Steam Release Incident, Athabasca Oil Sands Area, northeastern Alberta, Canada
Frances J. Hein and Brent Fairgrieve

Appendix B: Web Links for Oil Sands/Heavy Oil Organizations and Publications

The following provides updates to the Members-Only Webpage located at
http://emd.aapg.org/members_only/oil_sands/index.cfm.

Alabama Geological Survey website: http://www.gsa.state.al.us

Alaska Division of Geological and Geophysical Surveys: http://www.dggs.dnr.state.ak.us

Alberta Energy Regulator (AER): www.aer.ca

Alberta Chamber of Resources: www.abchamber.ca

Alberta Department of Energy: www.energy.gov.ab.ca

Alberta Department of Sustainable Resource Development: www.srd.alberta.ca

Alberta Innovates – Energy and Environmental Solutions: www.albertainnovates.ca/energy/

Alberta Environment Information Centre: www.environment.gov.ab.ca

Alberta Geological Survey: www.ags.gov.ab.ca

Alberta Government: www.alberta.ca

Alberta’s Industrial Heartland Association: www.industrialheartland.com
Alberta Ingenuity Centre for In Situ Energy: www.aicise.ca

Alberta Innovation & Science: www.aet.alberta.ca

Alberta Research Council: www.arc.ab.ca

Alberta Sulphur Research Ltd.: www.chem.ucalgary.ca/asr

Athabasca Regional Issues Working Group: www.oilsands.cc

Canadian Association of Petroleum Producers: www.capp.ca

Canadian Energy Research Institute: www.ceri.ca

Canadian Geoscience Council: www.geoscience.ca

Canadian Heavy Oil Association: www.choa.ab.ca

Canadian Institute of Mining, Metallurgy & Petroleum: www.cim.org

Canadian Petroleum Institute: www.cppi.ca

Canadian Society of Petroleum Geologists: www.cspg.org

Canadian Well Logging Society: www.cwls.org

CanMet Mining and Mineral Sciences Laboratories: www.nrcan.gc.ca

Careers: The Next Generation: www.nextgen.org

Climate Change Central: www.climatechangecentral.com

EnergyInet: www.energyinet.com

Environment Canada: www.ec.gc.ca

Fort McMurray Chamber of Commerce: www.fortmcmurraychamber.ca

Freehold Owners Association: www.fhoa.ca

Institute for Sustainable Energy, Environment and Economy: www.iseee.ca
International Energy Foundation: www.ief-energy.org

National Energy Board: www.neb-one.gc.ca

Natural Resources Canada: www.nrcan-rncan.gc.ca

New Mexico Bureau of Geology and Mineral Resources: http://geoinfo.nmt.edu/index.html

Oil Sands Discovery Centre: www.oilsandsdiscovery.com

Petroleum Society of Canada: www.petsoc.org, www.spe.org/canada

Petroleum Technology Alliance Canada: www.ptac.org

Petroleum Technology Research Centre: www.ptrc.ca

Saskatchewan Industry and Resources: www.ir.gov.sk.ca

Saskatchewan Government: www.ir.gov.sk.ca

Saskatchewan Research Council: www.src.sk.ca

Seeds Foundation: www.seedsfoundation.ca

Small Explorers and Producers Association of Canada: www.sepac.ca

Society of Petroleum Engineers: www.speca.ca

The Canadian Society of Exploration Geophysicists: www.cseg.ca

The Environmental Association of Alberta: www.esaa.org

U.S. Bureau of Land Management: www.blm.gov

Utah Heavy Oil: http://www.heavyoil.utah.edu/outreach.html; http://map.heavyoil.utah.edu/