EMD Coalbed Methane Committee Report
2017 EMD Annual Leadership Meeting
April 1, 2017

Brian Cardott (Chair; Oklahoma Geological Survey)

Vice Chairs:
Jeff Levine (Industry Vice Chair)
Maria Mastalerz (Government Vice Chair; Indiana Geological Survey)
Jack Pashin (Academic Vice Chair; Oklahoma State University)

EXECUTIVE SUMMARY

Coalbed methane (CBM; also known as coal-bed methane, coalbed natural gas, coal seam gas) is a type of unconventional natural gas generated and stored in coal beds. Sorbed gas is released and produced from coal following the reduction of hydrostatic pressure with the removal of water from coal cleats and other fractures during drilling. Coal mine methane (CMM), on the other hand, is gas produced in association with coal mining operations.

Production of natural gas from coal beds in the United States continued to decline in 2015. CBM is still an important resource globally. Research on CBM remains active, however, as indicated by the 56 technical papers published in 2016. These references have been added to the 85-page CBM bibliography available on the EMD Coalbed Methane Committee web site (http://www.aapg.org/about/aapg/overview/committees/emd/articleid/24810/committee-emd-coalbed-methane).

Mastalerz (2014, figure 7.3) included a map showing world CBM resources, production, and exploration activities as summarized below, modified by data from Kelafant (2016).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>2,824</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1,100</td>
<td>1,300</td>
</tr>
<tr>
<td>Alaska</td>
<td>1,037</td>
<td></td>
</tr>
<tr>
<td>U.S. (minus Alaska)</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>500</td>
<td>203</td>
</tr>
<tr>
<td>Canada</td>
<td>500</td>
<td>801</td>
</tr>
<tr>
<td>Indonesia</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>Ukraine</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Zimbabwe | 40
Kazakhstan | 25
Southern Africa | 110

Annual CBM Production by Country (2010 data)
(from Mastalerz, 2014)

<table>
<thead>
<tr>
<th>Country</th>
<th>Production, Bcf</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. (minus Alaska)</td>
<td>1,886</td>
</tr>
<tr>
<td>Canada</td>
<td>320</td>
</tr>
<tr>
<td>Australia</td>
<td>190</td>
</tr>
<tr>
<td>China</td>
<td>50</td>
</tr>
<tr>
<td>Alaska</td>
<td>1</td>
</tr>
<tr>
<td>Russia</td>
<td>0.5</td>
</tr>
<tr>
<td>India</td>
<td>0.4</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>0.4</td>
</tr>
</tbody>
</table>

STATUS OF U.S. COALBED METHANE ACTIVITIES

EIA (2009a) shows a map of U.S. lower 48 states CBM fields (as of April 2009). U.S. annual CBM production peaked at 1.966 Tcf in 2008 (EIA, 2009b, 2010, 2016a). CBM production declined to 1.269 Tcf in 2015 (EIA, 2016a), the lowest level since 2001, representing 4.7% of the U.S. total natural gas production of 27.1 Tcf (EIA 2016f; Figure 1). Note that U.S. CBM production in EIA (2016a, Table 15) is different than in EIA (2016b, Table 1). According to EIA (2016a, Table 15), the top 8 CBM producing U.S. states during 2015 (production in Bcf) were Colorado (392), New Mexico (344), Wyoming (207), Virginia (106), Alabama (72), Oklahoma (48), Utah (42), and Kansas (25). Annual CBM production decreased for each state over the previous year (EIA 2016a, c; Figure 2). Cumulative U.S. CBM production from 1989 through 2015 was 34.7 Tcf. CBM production continues even though few new wells are being completed, reflective of the very long productive lives of CBM wells. As many U.S. CBM fields approach late maturity in an environment of low commodity price, operators are working to optimize operations and reduce lifting costs. In the Black Warrior Basin of Alabama, for example, compressors are being used to produce large numbers of mature wells on vacuum, which has resulted in increased gas production and reduced pumping and water handling costs.

According to the Potential Gas Committee (2017), U.S. CBM resources are estimated at 158 Tcf. United States annual CBM proved reserves peaked at 21.874 Tcf in 2007 (EIA, 2009b, 2010, 2016d), with 12.517 Tcf in 2015 (EIA, 2016d) representing 4.1% of the U.S. total natural gas reserves of 308 Tcf (EIA, 2016e; Figure 3). Annual CBM proved reserves by U.S. state (through 2015) is available at EIA (2016d).
The EPA Coalbed Methane Outreach Program (https://www.epa.gov/cmop) has information on U.S. coal mine methane, including a map of CMM recovery at active and abandoned U.S. coal mines.

STATUS OF INTERNATIONAL COALBED METHANE ACTIVITIES

Australia

According to the EIA (2017, p. 8; updated March 7, 2017), “Geoscience Australia estimated total proved plus probable commercial reserves at 114 Tcf (62% conventional natural gas, 38% coal bed methane (CBM), and less than 1% tight gas) as of 2014.” “CBM resources, equivalent to about 43 Tcf, are primarily located in the northeastern Queensland Province in the Bowen Basin and the Surat Basin. Geoscience Australia anticipates the resource distribution of natural gas will shift from the offshore traditional gas production to CBM or other sources in the next few decades because key CBM developers are aggressively exploring and drilling in several areas.” “Commercial production from CBM, which began in 1996, rose to 424 Bcf in 2015, 50% higher than in 2014. This production increase corresponds with the commencement of the country’s first CBM-to-LNG export terminals in Queensland over the past two years” (p. 11).

Flores (2013, figure 9.15) included a map showing coal seam gas (CSG) potential in Australia noting that the coal beds range in age from Permian to Tertiary in about 30 coal-bearing basins. Blewett (2012) included maps showing the distribution of
demonstrated black coal resources and gas resources in Australia. CSG reserves in 2012 are divided into six coal basins in eastern Australia: Surat Basin (69%), Bowen Basin (23%), Gunnedah Basin (4%), Gloucester Basin (2%), Sydney Basin (1%), and Clarence-Moreton Basin (1%) (Flores, 2013). The Australia country analysis brief is available at EIA (2015a).

China

CBM production in China in 2016 was 7.48 billion m³ with a growth of 7.8%, reported by the China Coal Bed Methane Industry Market Research Report (Figure 4; http://www.china1baogao.com/news/20170217/8420129.html). By the end of October 2016, the North China area was the main CBM producing area with 83.6% of the total CBM production in China (http://www.chyxx.com/data/201612/479394.html). The Qinshui Basin and Eastern Ordos Basin are currently the two main CBM production areas. The Qinshui Basin in Shanxi Province, North China, has CBM proved reserves of 280 billion m³ as of mid-February, 2016; annual CBM production in this basin is up to 4.3 billion m³ and the CBM daily production is more than 2.3 million m³ (http://coal.in-en.com/html/coal-2333146.shtml). By 2020, annual CBM production in China is estimated to be 10 billion m³, of which production from the two main basins will be up to 8.3 billion m³ (http://wap.cnpc.com.cn/system/2016/12/001625165.shtml). The potential CBM geological units in the Qinshui Basin are still in an exploration stage, but both vertical and horizontal wells, and staged fracturing techniques, are planned for selected coal beds.

Figure 4. China CBM production in 2016.

Canada

Canada contains diverse CBM resources, which are concentrated chiefly in the Carboniferous strata in the intermontaine basins of the Canadian Maritime Provinces, Mesozoic-Cenozoic strata in intermontaine basins of British Columbia, and in Cretaceous strata of the Western Canada Sedimentary Basin of the Cordilleran foreland in Alberta. The vast majority of the resource and reserve base are in Alberta, where the Alberta Geological Survey estimates OGIP on the order of 500 Tcf. The bulk of the production comes from the Horseshoe Canyon play, and development is active in a variety of Cretaceous coal-bearing formations. Early production operations focused on vertical wells completed in multiple coal seams, and expansion of the industry between 2005 and 2007 was buoyed by the advent of lateral and multilateral drilling in single seams.

Remaining reserves in Alberta are estimated to be about 2 Tcf according to the Alberta Energy Regulator, indicating that, although development is widespread, potential exists for a major expansion of the industry given a favorable economic climate. Development activity, however, has decreased significantly in recent years in response to low natural gas prices. According to the International Energy Agency, Canadian CBM production peaked at 8.9 Bcm (315 Bcf) in 2010. Production was 7.2 Bcm (254 Bcf) in 2014, and the annual rate of decline has increased from 3.7% in 2011 to 6.8% in 2014 (Figure 5). Accordingly, the current economic climate remains challenging for the development of new CBM reserves in Canada.

Figure 5. Canadian unconventional gas production, 2000-2014 (source: International Energy Agency). Coalbed methane production peaked in 2010, and the rate of decline has been increasing since 2011 as Canadian natural gas markets are challenged by decreasing natural gas prices.

India

Bhattacharya (2016, p. 51) reported that “India contains 60.6 billion tonnes of coal…could contain up to 4.6 trillion m³ of gas.” Of 33 CBM exploration blocks awarded since 2001, only three blocks are producing gas. “The lack of commercial production stems from factors including the lack of detailed reservoir characterization, the lack of professional training for domestic companies, and the lack of equipment and advanced CBM technology in the most productive basins” (Bhattacharya, 2016, p. 51).
References Cited

Bhattacharya, G., 2016, Natural gas, unconventional resources can assist India in meeting future energy demand: Oil & Gas Journal, v. 114.11, p. 46-51.

Coalbed Methane Calendar

September 5-8, 2017: 34th Annual International Pittsburgh Coal Conference, Pittsburgh, PA. Session 9 is on “Coal bed methane and shale gas”.
http://www.engineering.pitt.edu/pcc/

EMD Coalbed Methane Committee Web Links

General
North American Coalbed Methane Forum: http://www.nacbmforum.com

Data

Government
U.S. EPA Coalbed Methane Outreach Program: https://www.epa.gov/cmop
U.S. EIA Coalbed Methane Maps: http://www.eia.gov/maps/maps.htm#coalbed

Water produced with coal-bed methane: http://pubs.usgs.gov/fs/fs-0156-00/

U.S. EIA CBM Reserves and Production (Table 15): http://www.eia.gov/naturalgas/crudeoilreserves/index.cfm

U.S. EIA CBM Production: http://www.eia.gov/dnav/ng/NG_ENR_COALBED_A_EPG0_R52_BCF_A.htm

U.S. EIA CBM Reserves: http://www.eia.gov/dnav/ng/ng_enr_coalbed_a_EPG0_R51_Bcf_a.htm

Oklahoma coalbed methane: http://www.ou.edu/content/ogs/research/energy/coal.html

Wyoming Oil & Gas Conservation Commission CBM: http://wogcc.state.wy.us/

Alberta Department of Energy: http://www.energy.alberta.ca/

CBM Asia (Specializing in Indonesian CBM): http://www.cbmasia.ca/What-Is-CBM

New South Wales Government:

Australia Coal Seam Gas:

Education/Information

Coalbed Methane Association of Alabama: http://coalbed.com/

Coalbed Methane Education (British Columbia):
http://www.empr.gov.bc.ca/MINING/GEOSCIENCE/COAL/Pages/default.aspx
http://www.empr.gov.bc.ca/Mining/Geoscience/Coal/CoalBC/CBM/Pages/default.aspx

World Coal Association:

Montana Earth Science Picture of the Week: http://formontana.net/coalbed.html