EMD Oil (Tar) Sands Committee

EMD Oil (Tar) Sands Committee Commodity Report - April, 2013

Steven Schamel1, Fran Hein2, and Debra Higley3

April 30, 2013

Contents

Vice-Chairs

Advisory Committee

Introduction

Bitumen Resources and Production

Resource Technology

Environmental Issues

EMD Oil (Tar) Sands Technical Sessions, Publications, and other Products

Heavy oil conferences and workshops scheduled in 2013-2014

Selected References

Appendices

B. Web Links for Oil Sands/Heavy Oil Organizations and Publications

1 GeoX Consulting Inc., Salt Lake City, Utah, USA
2 Alberta Energy Regulator (former Energy Resources Conservation Board), Calgary, Alberta, Canada
3 US Geological Survey, Denver, Colorado, USA
Vice-Chairs:

- Mark Holtz, P.G., P.E. (Vice-Chair: Industry), International Business Development EOR, Praxair, Inc., Austin, TX, US
- Burns Cheadle, Ph.D., P.G. (Vice-Chair: University), University of Western Ontario, London, ON, Canada
- Frances “Fran” Hein, Ph. D. (Vice-Chair: Canadian Government), ERCB, Calgary, AB, Canada
- Debra Higley, Ph.D. (Vice-Chair: US Government) USGS, Denver, Colorado, US
- Mary Harris, Ph.D., P. G., (Vice-Chair: Representative of DEG), Savannah River Nation Laboratory, Aiken, SC, US
- Daniel Tearpoch, CEO (Vice-Chair: Representative of DPA), SCA, LLC, Houston, TX

Advisory Committee:

- Rudolph S. Strobl, P.G., Research Geologist Statoil Canada Ltd, Calgary, AB, Canada
- Paul G. Lillis, Ph.D., Research Geochemist, United States Geological Survey, Denver, CO, US
Introduction

This commodity commonly consists of heavy oil (tar) in un lithified sand; however, heavy oil reservoirs can also include porous sandstone and carbonates. Oil sands petroleum is named bitumen, tar, and extra-heavy oil, although these accumulations can also contain some lighter hydrocarbons and even gas. Bitumen API gravity is less than 10° and viscosity is generally greater than 10,000 centipoises (cP) at reservoir temperature and pressure; heavy oil API gravity is between 10° and 25° with viscosity greater than 100 cP (Danylik et al., 1984; Schenk et al., 2006). Heterogeneity in reservoirs occurs at microscopic through reservoir scales, and includes sediments of variable depositional energy and hydrocarbon composition. Viscosity gradients of hydrocarbons in the Athabasca oil sands of Alberta primarily reflect differing levels of biodegradation (Adams, 2008; Gates et al., 2008; Larter et al., 2008, Fustic et al., in press). Heavy and extra-heavy oil deposits occur in more than 70 countries across the world, with the largest accumulations located in Canada and Venezuela (Dusseault et al., 2008; Hein and Marsh, 2008; Hernandez et al., 2008; Marsh and Hein, 2008; Meyer et al., 2007; Villarroel, 2008).

Bitumen Resources and Production

Almost all of the bitumen being commercially produced in North America is from Alberta, Canada. Canada is an important strategic source of bitumen and of the synthetic crude oil (SCO) obtained by upgrading bitumen. Bitumen and heavy oil are also characterized by high concentrations of nitrogen, oxygen, sulfur, and heavy metals, which results in increased costs for extraction, transportation, refining, and marketing than for conventional oil (Meyer and Attanasi, 2010). Research and planning are ongoing for transportation alternatives for heavy crude, bitumen, and upgraded bitumen using new and existing infrastructure of pipelines and railways. Such integration has been called a virtual “pipeline on rails” to get the raw and upgraded bitumen to U.S. markets (Perry and Meyer, 2009). Synthetic crude oil from bitumen and (or) partially upgraded bitumen is being evaluated for potential long-distance transport to refineries in the Midwest and Gulf states of the USA and to existing or proposed terminals on the west coast of North America. Associated concerns include effects on the price of crude oil, and the environmental impacts that are associated with land disturbance, surface reclamation, habitat disturbance, and oil spills or leaks with associated potential pollution of surface and ground waters.

A U.S. goal for energy independence could include production from existing U.S. oil sands deposits using surface mining or in-situ extraction. Current U.S. bitumen production is mainly for local use on roads and similar surfaces, partly because the states do not have the infrastructure of the Alberta oil sands area. Schenk et al. (2006) listed total measured plus speculative in-place estimates of bitumen at about 54 billion barrels (BB) for 29 major oil sand accumulations in Alabama, Alaska, California, Kentucky, New Mexico, Oklahoma, Texas, Utah, and Wyoming.
Table 1: Previous estimates of bitumen-heavy oil resource-in-place in the United States.

<table>
<thead>
<tr>
<th>State</th>
<th>No. deposits</th>
<th>°API range</th>
<th>Measured, MMBO</th>
<th>Total, MMBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utah</td>
<td>10</td>
<td>-2.9 to 10.4</td>
<td>11,850</td>
<td>18,680</td>
</tr>
<tr>
<td>Alaska</td>
<td>1</td>
<td>7.1 to 11.5</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Alabama</td>
<td>2</td>
<td>na</td>
<td>1,760</td>
<td>6,360</td>
</tr>
<tr>
<td>Texas</td>
<td>3</td>
<td>-2.0 to 7.0</td>
<td>3,870</td>
<td>4,880</td>
</tr>
<tr>
<td>California</td>
<td>6</td>
<td>0.0 to 17.0</td>
<td>1,910</td>
<td>4,470</td>
</tr>
<tr>
<td>Kentucky</td>
<td>4</td>
<td>10</td>
<td>1,720</td>
<td>3,410</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1</td>
<td>12</td>
<td>130</td>
<td>350</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2</td>
<td>na</td>
<td>120</td>
<td>145</td>
</tr>
</tbody>
</table>

Data from Schenk and others, 2006

USA Oil Sands

The older estimates of total oil sand resources provide only limited guidance for commercial, environmentally-responsible development of the heavy oil and bitumen deposits. The resources in each of the states have distinct characteristics that influence current and future exploitation.

California has the second largest heavy oil reserves in the world, second only to Venezuela (Hein, 2013). California’s oil fields, of which 52 have reserves greater than 100 MMBO, are located in the central and southern parts of the state (Figure). As of 2010, the proved reserves were 2,938 MMBO, nearly 70% of which were in the southern San Joaquin basin (U.S. Energy Information Administration (EIA), April 1, 2012). Most of the fields were discovered and put into primary production in the period 1890-1930. However, with the introduction of waterflooding, thermal recovery, and other EOR technologies starting in the 1950s and 1960s, oil recoveries improved dramatically and the proved reserves increased several fold (Tennyson, 2005).

Nearly all of the oil is sourced from organic-rich intervals within the thick Miocene-age Monterey diatomite, diatomaceous mudstone and carbonate. Due to a combination of Type IIS kerogen, modest burial and thermal heating, and generally shallow depths of oil pools, the oil tends to be heavy and relatively viscous. These are thermally immature, partially biodegraded oils. Approximately 40% of the oil is produced by steam flooding, cyclic steam stimulation or other thermal recovery methods. Thermally-produced oil comes mainly from fields in the San Joaquin basin (Table 2 and Figure 1). In general, the reservoirs are poorly consolidated sandstones intercalated within or overlying the Monterey Formation. However, the South Belridge field produces from diagenetically-altered, highly fractured diatomite. The Coalinga field produces from sandstones in the Temblor Formation underlying the Monterey Formation and the source rock is the Middle Eocene Kreyenhagen Formation unconformably overlain by the
Figure 1: Principal oil fields of California (Tennyson, 2005).

Temblor. The larger thermal oil fields (Table 2) have experienced oil production declines in the five-year period 2007-2011 on the order of 11.3% (Kern River) to 28.8% (Cymric). Smaller fields have had little or no declines. The young (1952) San Ardo field immediately west of the San Joaquin basin (Figure 1) has actually doubled production in this period. A small portion of the supergiant Wilmington field in the Los Angeles basin was produced by steam flood using two pairs of parallel horizontal injector and producer wells. The project was stopped because of subsidence problems. With the exception of this successful pilot, air quality issues have limited the expansion of thermal recovery methods in the Los Angeles basin.
Table 2: California oil fields produced by thermal recovery methods. The fields are arranged by 2011 total oil yield; the volume of associated gas is indicated by the gas-oil ratio (GOR) in units of SCF gas/barrels oil. Also shown are the characteristic oil gravity, oil viscosity, and reservoir or in-situ oil temperature of the fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>2011 Oil, MMBO</th>
<th>2011 GOR</th>
<th>°API</th>
<th>Oil viscosity, cp</th>
<th>Oil temp., °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midway-Sunset</td>
<td>30,564</td>
<td>165</td>
<td>11 to 14</td>
<td>1000 - 10000</td>
<td>85 - 130</td>
</tr>
<tr>
<td>Kern River</td>
<td>26,804</td>
<td>0</td>
<td>13</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>South Belridge</td>
<td>25,165</td>
<td>414</td>
<td>13 to 14</td>
<td>1500 - 4000</td>
<td>95</td>
</tr>
<tr>
<td>Cymric</td>
<td>13,089</td>
<td>374</td>
<td>11 to 14</td>
<td>1000 - 2000</td>
<td>95 - 105</td>
</tr>
<tr>
<td>Lost Hills</td>
<td>11,232</td>
<td>710</td>
<td>12.7 to 13.9</td>
<td>1500 - 4000</td>
<td>75 - 82</td>
</tr>
<tr>
<td>San Ardo</td>
<td>6,835</td>
<td>193</td>
<td>11 to 12</td>
<td>1000 - 3000</td>
<td>125 - 130</td>
</tr>
<tr>
<td>Coalinga</td>
<td>5,603</td>
<td>38</td>
<td>9 to 13</td>
<td>2000 - 28000</td>
<td>84 - 105</td>
</tr>
<tr>
<td>Kern Front</td>
<td>2,829</td>
<td>0</td>
<td>13 to 14.8</td>
<td>1500</td>
<td>80 - 95</td>
</tr>
<tr>
<td>Poso Creek</td>
<td>2,781</td>
<td>4</td>
<td>13</td>
<td>2800</td>
<td>110</td>
</tr>
<tr>
<td>Mckittrick</td>
<td>1,832</td>
<td>1,202</td>
<td>10 to 12</td>
<td>13000 - 51000</td>
<td>83</td>
</tr>
<tr>
<td>Edison</td>
<td>0.840</td>
<td>5</td>
<td>14</td>
<td>2000</td>
<td>90</td>
</tr>
<tr>
<td>Placerita</td>
<td>0.710</td>
<td>0</td>
<td>13</td>
<td>10000</td>
<td>90</td>
</tr>
<tr>
<td>North Antelope Hills</td>
<td>0.380</td>
<td>0</td>
<td>14</td>
<td>1400</td>
<td>80</td>
</tr>
</tbody>
</table>

Data from California DOGGR and Oil & Gas Journal, April 2, 2012

In addition to the heavy oil accumulations that are being produced, California has numerous shallow bitumen deposits and seeps that are not currently exploited. The total resource is estimated to be as large as 4.7 billion barrels (Kuuskraa et al., 1986).

Five of the six largest tar sand deposits are in the onshore Santa Maria basin (central Coastal zone in Figure) covering a total area of over 60 square miles. In general, the deposits are in the Sisquoc Formation, which overlies and is a seal to the oil-generating Monterey Formation. An additional major deposit is in the onshore Ventura basin (extreme southeast of the Coastal zone). Minor tar sand deposits and surface seeps are scattered throughout the oil-producing areas of California generally overlying or up-dip from known oil fields.

During the past decade, oil production in California has steadily declined (U.S. EIA, March 14, 2012). The rate of decline is being slowed, and may be reversed, through the application of fully integrated reservoir characterization and improved recovery technologies that are resulting in higher recovery factors (Dusseault, 2013), up to 70-80% in some fields.

Alaska’s heavy oil and bitumen deposits on the North Slope are very large (24 to 33 BBO) and they hold promise for commercially-successful development. Since early 1980s (Werner, 1987) two very large, shallow heavy oil impregnated sands have been known to overlie the Kuparuk River field and underlie a 1,800 foot thick permafrost (Figure). These are the Ugnu Sands (8-12 °API) at depths of 2,000-5,000 feet and the West Sak Formation (16-22 °API) at 2,300-5,500 feet. The size of the deposits is well
defined with the numerous wells tapping the underlying conventional oil fields. For the Lower Ugnu Sands and West Sak Formation the resources are 12-18 BBO and 12 BBO, respectively. These are fluvial-deltaic sands deposited during the Late Cretaceous-earliest Paleocene in the north and northeast prograding Brooks Range coastal plain (Hulm et al., 2013).

Figure 2: Location of shallow, heavy oil accumulations on the North Slope of Alaska. Heavy oil deposits overlie the Kuparuk field and parts of the Prudhoe and Milne Point fields and occur in sands within the Ugnu, West Sak and Schrader Bluff formations. Source: Gordon Pospisil, BP Exploration (Alaska) Inc., January 6, 2011.

Production of viscous (50-5000 cp) oil from the West Sak pools began in the early 1990s and reaching the current level of 4000-5000 bopd in 2004. To date, over 100 MMBO have been recovered from the formation using a combination of vertical wells and waterflood. The heavy oil in the Ugnu Sands present a much greater technical challenge due to the higher viscosity (5000 to over 20,000 cp) of the oil and friability of the sand. At its Milne Point S-Pad Pilot, BP Alaska is trying two different recovery strategies. One is pumping from the heel of a cased and perforated horizontal well which early in 2013 successfully produced heavy oil at a rate of 350 bopd (Newsminer, January 16, 2013). The other is a test of CHOPS (‘cold heavy production with sand’) recovery process (Young et al., 2010) with results not yet announced.
Utah’s bitumen and heavy oil are found throughout the eastern half of the state (Schamel, 2009; Schamel, 2013a, b). In northeast Utah, the largest accumulations are located along the southern margin of the Uinta Basin (Figure 3) underlying vast portions of the gently north-dipping East and West Tavaputs Plateaus. This highland surface above the Roan Cliffs on either side of the Green River (Desolation) Canyon is supported by sandstone and limestones of the Green River Formation (lower Eocene). Here the resource-in-place is at least 10 BBO, nearly all of it reservoired in fluvial-deltaic

Figure: Distribution of bitumen and heavy oil deposits (shaded overprint) on the margins of the Uinta Basin in northeast Utah.
sandstone bodies within the lower member of the Green River Formation. On the northern basin margin, heavy oil occurs in a variety of Mesozoic and Tertiary reservoirs on the hanging wall of the Uinta Basin Boundary Fault. The proven resource is less than 2.0 BBO, but the potential for additional undiscovered heavy oil and bitumen is great. The source of the heavy oil is organic-rich lacustrine calcareous mudstone in the Green River Formation. These naphthenic oils have API gravities in the 5.5 to 17.3º range, are only weakly biodegraded in the subsurface, and are sulfur-poor (0.19 to 0.76 wt%).

New resource-in-place estimates for the major deposits are determined from the average volume of bitumen/heavy oil measured in cores distributed across the deposit delineated by wells and surface exposures (Table 3). The deposits on the south flank of the basin are extensive and large, but the actual concentrations (richness) of resource are small. For the P. R. Spring the average richness is just 25.9 MBO/acre, and it is only slightly higher for the entire Sunnyside accumulation. However, only small portion of the Sunnyside deposit having unusually thick sands within an anticlinal trap has a measured average richness of 638.3 MBO/acre. The two principal deposits on the north flank of the basin, Asphalt Ridge and Whiterocks, are relatively small, but contain high concentrations of heavy oil.

Table 3: Estimated resource size and richness of the principal heavy oil-bitumen deposits in Utah.

<table>
<thead>
<tr>
<th>Bitumen-heavy oil deposit</th>
<th>Resource estimate MMBO</th>
<th>Areal extent square miles</th>
<th>Richness, average MBO/acre</th>
<th>API gravity</th>
<th>Reservoir unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.R. Spring - Hill Creek</td>
<td>7,790</td>
<td>470</td>
<td>25.9</td>
<td>5.9º - 13.8º</td>
<td>lower Green River ss</td>
</tr>
<tr>
<td>Sunnyside</td>
<td>3,500 - 4,000</td>
<td>122</td>
<td>45 - 51</td>
<td>7.1º - 10.1º</td>
<td>lower Green River ss</td>
</tr>
<tr>
<td>Sunnyside 'core'</td>
<td>1,160</td>
<td>2.7</td>
<td>638.3</td>
<td></td>
<td>lower Green River ss</td>
</tr>
<tr>
<td>Asphalt Ridge</td>
<td>1,360</td>
<td>16</td>
<td>132.9</td>
<td>10.0º - 14.4º</td>
<td>Mesaverde ss (U Crete.)</td>
</tr>
<tr>
<td>Whiterocks</td>
<td>98</td>
<td>0.45</td>
<td>338</td>
<td>11.4º - 13.5º</td>
<td>Navajo Ss (Tr-Jr.)</td>
</tr>
<tr>
<td>Tar Sand Triangle</td>
<td>4,250 - 5,150</td>
<td>198</td>
<td>33.5 - 40.6</td>
<td>-3.9º - 9.6º</td>
<td>White Rim Ss (L Perm)</td>
</tr>
<tr>
<td>TST 'core'</td>
<td>1,300 - 2,460</td>
<td>30 - 52</td>
<td>67.7 - 73.9</td>
<td></td>
<td>White Rim Ss (L Perm)</td>
</tr>
</tbody>
</table>

In the southeast quadrant of Utah, there are numerous shallow bitumen accumulations on the northwest and west margins of the Pennsylvanian-Permian Paradox Basin. The deposits are hosted in rocks of late Paleozoic and early Mesozoic age. With the exception of the Tar Sand Triangle and Circle Cliffs deposits, most accumulations are small and/or very lean. Normally, the oils are heavier than 10º API and highly biodegraded. In contrast to the Uinta Basin deposits, this bitumen is derived from a marine source rock and is aromatic with high sulfur content (1.6 to 6.3 wt%), but low nitrogen (0.3 to 0.9 wt%).

Bitumen in the Tar Sand Triangle deposit south of the junction of the Green River with the Colorado River is reservoired in a several-hundred-foot-thick eolian sandstone of Lower Permian age. Across an area of 84 square miles, the thickness of bitumen-impregnated sandstone exceeds 100 ft. The API gravity of the bitumen is less than 8º at the surface and just over 10º in the subsurface. Schamel (2013) estimates the total in-
place bitumen resource between 4.25 and 5.15 BBO in a deposit just less than 200 square miles in size. However, at a resource threshold equal or greater than 60 MBO/acre, the resource ranges between 1.30 to 2.46 BBO in an area of 30 to 52 square miles, respectively. Approximately half of the deposit is in the Glen Canyon National Recreation Area where development could be severely limited. The Circle Cliffs deposit, with an estimated 1.73 BBO, lies completely in the Capitol Reef National Park and Grand Staircase-Escalante National Monument, off limits to exploitation.

The Uinta Basin heavy oils and bitumens are highly viscous (Figure 4) and the Tar Sand Triangle bitumen is only slightly less so. Both groups of oils have viscosity orders of magnitude greater than the 13 °API heavy oil produced by steamflood in the Midway-Sunset field, California. So far, the Utah ‘tar sands’ have resisted attempts at commercial development. However, two pilot projects starting in 2014 to extract liquids from surface mined ‘tar sand’ have been announced, one in the P. R. Spring deposit and the other at the south end of Asphalt Ridge.

![Figure 4: Viscosity profiles for representative Uinta Basin and Tar Sand Triangle heavy oils compared with a Midway-Sunset field (San Joaquin basin) heavy oil produced by steamflood. Data from Schamel et al. (2002) and Schamel (2009).](image)

On March 22, 2013, BLM Principal Deputy Director Neil Kornze signed the Record of Decision (ROD) for the Oil Shale and Tar Sands Programmatic EIS, finalizing the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement (OSTS PEIS) that was released in November. The ROD opens 130,000 Federal acres of designated tar sands in Utah for leasing and development. Federal lands in adjacent
Wyoming and Colorado, also covered by this ROD for oil shale leasing, hold no tar sand deposits. For further information go to: http://ostseis.anl.gov/documents/.

The Southwest Texas Heavy Oil Province (Ewing, 2009) is located on the northeastern margin of the Maverick Basin northeast of Eagle Pass, Texas. Bitumen is hosted in early to middle Campanian carbonate grainstone shoals (Anacacho Formation) and in late Campanian-Maastrichtian sandstone (San Miguel, Olmos, and Escondido Formations). The largest accumulation is in the San Miguel ‘D’ Sandstone with a reported 3.2 BBO in an area of 256 square miles (Kuuskraa et al., 1987). The bitumen is highly viscous and sulfur-rich (10%) with an API gravity of -2º to 10ºAPI. The average resource grade of the deposit is less than 20 MBO/acre. Only a very small part of the deposit has a grade in excess of 40 MBO/acre. In the early 1980s, Exxon and Conoco produced 417,673 barrels of heavy oil from pilot plants, but since then there has been no exploitation of the deposit. The shallow Anacacho deposit contains an estimated 550 MMBO in an area of 36.6 square miles. The average resource grade is 23.5 MBO/acre. The deposit has been mined since 1888 for asphaltic road paving.

In northwest Alabama, bitumen-impregnated Hartselle Sandstone (Mississippian) occurs sporadically along a 70 mile-long belt extending east-southeast across the Cumberland Plateau from near the Alabama-Mississippi border to the front of the Appalachian thrust belt. To the south of this outcrop belt, bitumen is observed in wells penetrating the Hartselle Sandstone. The Alabama Geological Survey (Wilson, 1987) speculates that there could be 7.5 billion barrels of bitumen in an area of 2,800 square miles, of which 350 MMBO is at depths shallower than 50 feet. Despite the large potential resource, the deposit is lean with an average bitumen-impregnated interval of 14 feet and an average resource of only 4.3 MBO/acre.

The heavy oil deposits of western Kentucky form an arcuate belt along the southeast margin of the Illinois Basin. The heavy oil is hosted in fluvial sandstones, some filling paleovalleys, of Late Mississippian-Early Pennsylvanian age (May, 2013). The area is crossed by the east-west trending Rough Creek and Pennyrile fault systems that aid in trapping the heavy oil pools and may have been the conduits for eastward oil migration from hydrocarbon kitchens at the juncture of Illinois, Indiana and Kentucky. The largest deposit (2.1 BBO) extends in a zone 5-10 miles wide and 50 miles long north of Bowling Green. This deposit in the Clifty Sandstone generally is lean with thickness of the oil-impregnated sands from a few to just over 50 feet (Noger, 1999). The API gravity of the heavy oil is 10º. Other deposits are considerably smaller and have API gravities of 10º to 17º. The total oil-in-place is estimated to be 3.42 BBO (Noger, 1999). At present, there is no commercial exploitation of the deposits for liquid hydrocarbons, although at least one operator has announced plans to do so.

Oil sand accumulations in east central New Mexico total in-place measured and speculative resources of 130 million barrels (MB) and 190 to 220 MB, respectively, within Triassic Santa Rosa Sandstone (IOCC, 1983; Schenk and others, 2006) at depths of less than 2,000 ft. (Broadhead, 1984). Speculative in-place oil sands resources total 800 MB for Oklahoma (IOCC, 1983; Schenk and others, 2006). Oil sands are located

Alberta Oil Sands and Carbonate-Bitumen

Excellent sources of information on Alberta oil sands and carbonate-hosted bitumen deposits are the resource assessments and regulatory information by the Alberta Energy Regulator (former Energy Resources Conservation Board, ERCB) (http://www.ercb.ca/data-and-publications/statistical-reports/st98). Estimated in-place resources for the Alberta oil sands are 1844 billion barrels (BB) (293.1 billion cubic meters (BCM)) (Table 1) (ERCB, 2012, p. 2). Estimated remaining established reserves of in situ and mineable crude bitumen is 169 BB (26.8 BCM); only 4.6% of the initial established crude bitumen has been produced since commercial production began in 1967 (ERCB, 2012, p. 8).

Table 4: Summary of Alberta’s energy reserves, resources, and production at the end of 2011 (from ERCB, 2012).

<table>
<thead>
<tr>
<th></th>
<th>Crude bitumen (million cubic metres)</th>
<th>Crude oil (million cubic metres)</th>
<th>Natural gas (trillion cubic feet)</th>
<th>Raw coal (billion tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial in-place resources</td>
<td>293 125</td>
<td>1 844</td>
<td>11 357</td>
<td>71.5</td>
</tr>
<tr>
<td>Initial established reserves</td>
<td>28 092</td>
<td>177</td>
<td>2 983</td>
<td>18.0</td>
</tr>
<tr>
<td>Cumulative production</td>
<td>1 294</td>
<td>8.1</td>
<td>2 617</td>
<td>16.5</td>
</tr>
<tr>
<td>Remaining established</td>
<td>26 798</td>
<td>169</td>
<td>246</td>
<td>1.5</td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td></td>
<td>1 007</td>
<td>35.7</td>
</tr>
<tr>
<td>Annual production</td>
<td>101</td>
<td>0.637</td>
<td>28.4</td>
<td>0.179</td>
</tr>
<tr>
<td>Ultimate potential</td>
<td>50 000</td>
<td>315</td>
<td>3 130</td>
<td>19.7</td>
</tr>
<tr>
<td>(recoverable)</td>
<td></td>
<td></td>
<td>6 276</td>
<td>223</td>
</tr>
</tbody>
</table>

1 Expressed as “as is” gas, except for annual production, which is at 37.4 megajoules per cubic metre; includes coalbed methane natural gas.
2 Measured at field gate (or 34.7 trillion cubic feet downstream of straddle plant).
3 Does not include unconventional natural gas.
4 Annual production is marketable.

Crude bitumen is heavy and extra heavy oil that at reservoir conditions has a very high viscosity such that it will not naturally flow to a well bore. Administratively, in Alberta, the geologic formations (whether clastic or carbonate) and the geographic areas containing the bitumen are designated as the Athabasca, Cold Lake or Peace River oil sands areas (Figure 5).
Most of the in-place bitumen is hosted within unlithified sands of the Lower Cretaceous Wabiskaw-McMurray deposit in the in-situ development area (Table 5), followed by the Grosmont carbonate-bitumen deposit, and the Wabiskaw-McMurray deposit in the surface mineable area (Table 5).

Included in the initial in-place volumes of crude bitumen (Table 5) are reassessments for the Athabasca-Grosmont carbonate-bitumen (done in 2009) and the Athabasca-Grand Rapids oil sands and Athabasca-Nisku carbonate-bitumen deposits (done in 2011). The Nisku reassessment resulted in a 57% increase in initial bitumen volume in place. The Nisku Formation, like the Athabasca-Grosmont carbonate-bitumen deposit, is a shelf carbonate that has undergone significant leaching and karstification, with the creation of an extensive vug and cavern network. Conventional oil migrated and infilled the paleocave deposits and then degraded in place to form the bitumen. Other prospective carbonate-bitumen reservoirs are being explored west of the town site of Fort McMurray, with initial industry estimates indicating that bitumen pay zones may exceed 100 m in thickness, hosted primarily within the Leduc Formation carbonates (ERCB, 2012).

A number of factors (including economic, environmental and technological criteria) are applied to the initial in-place volumes of crude bitumen to attain the established reserves. In Alberta there are two types of reserves for crude bitumen – those that are anticipated to be recovered by surface mining techniques (generally in areas with < 65 m of overburden in the Athabasca area), and those to be recovered by underground in-situ technologies (in areas with > 65 m overburden) (largely thermal, for Athabasca,

\[\text{Figure 5: Alberta’s Peace River, Athabasca and Cold Lake oil sands areas, highlighting the main deposits (from ERCB, 2012).} \]
mainly Steam-Assisted Gravity Drainage (SAGD); for Cold Lake, Cyclic Steam Stimulation (CSS); and for Peace River, thermal and primary recovery) (Tables 6 and 7).

Table 5: Initial in-place volumes of crude bitumen as of December 31, 2011 (from ERCB, 2012).

<table>
<thead>
<tr>
<th>Oil sands area</th>
<th>Oil sands deposit</th>
<th>Initial volume in place (10^8 m^3)</th>
<th>Area (10^8 ha^2)</th>
<th>Average pay thickness (m)</th>
<th>Mass (%)</th>
<th>Pore volume oil (%)</th>
<th>Average porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athabasca</td>
<td>Upper Grand Rapids</td>
<td>5.817</td>
<td>359</td>
<td>8.5</td>
<td>9.2</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Middle Grand Rapids</td>
<td>2.171</td>
<td>183</td>
<td>6.8</td>
<td>8.4</td>
<td>55</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Lower Grand Rapids</td>
<td>1.286</td>
<td>134</td>
<td>5.6</td>
<td>8.3</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Wabiskaw-McMurray (mineable)</td>
<td>20.823</td>
<td>375</td>
<td>25.9</td>
<td>10.1</td>
<td>76</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Wabiskaw-McMurray (in situ)</td>
<td>131.609</td>
<td>4.694</td>
<td>13.1</td>
<td>10.2</td>
<td>73</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Nisku</td>
<td>16.232</td>
<td>819</td>
<td>14.4</td>
<td>5.7</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Grosmont</td>
<td>64.537</td>
<td>1.766</td>
<td>23.8</td>
<td>6.6</td>
<td>79</td>
<td>20</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>242 475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Lake</td>
<td>Upper Grand Rapids</td>
<td>5.377</td>
<td>612</td>
<td>4.8</td>
<td>9.0</td>
<td>65</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Lower Grand Rapids</td>
<td>10.004</td>
<td>658</td>
<td>7.8</td>
<td>9.2</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Clearwater</td>
<td>9.422</td>
<td>433</td>
<td>11.8</td>
<td>8.9</td>
<td>59</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Wabiskaw-McMurray</td>
<td>4.287</td>
<td>485</td>
<td>5.1</td>
<td>8.1</td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>29 090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace River</td>
<td>Bluesky-Gething</td>
<td>10.968</td>
<td>1.016</td>
<td>6.1</td>
<td>8.1</td>
<td>68</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Bellloy</td>
<td>282</td>
<td>26</td>
<td>8.0</td>
<td>7.8</td>
<td>64</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Deboft</td>
<td>7.800</td>
<td>258</td>
<td>25.3</td>
<td>5.1</td>
<td>66</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Shunda</td>
<td>2.510</td>
<td>143</td>
<td>14.0</td>
<td>5.3</td>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>21 560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>293 125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Mineable crude bitumen reserves in Alberta for areas under active development as of December 31, 2011 (from ERCB, 2012).

<table>
<thead>
<tr>
<th>Development</th>
<th>Project area* (ha)</th>
<th>Initial mineable volume in place (10^8 m^3)</th>
<th>Initial established reserves (10^8 m^3)</th>
<th>Cumulative production (10^6 m^3)</th>
<th>Remaining established reserves (10^8 m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRL Horizon</td>
<td>28 482</td>
<td>834</td>
<td>537</td>
<td>13</td>
<td>524</td>
</tr>
<tr>
<td>Fort Hills</td>
<td>18 976</td>
<td>699</td>
<td>364</td>
<td>0</td>
<td>364</td>
</tr>
<tr>
<td>Imperial/Exxon Kearl</td>
<td>19 674</td>
<td>1324</td>
<td>872</td>
<td>0</td>
<td>872</td>
</tr>
<tr>
<td>Shell Muskeg River</td>
<td>13 581</td>
<td>672</td>
<td>419</td>
<td>70</td>
<td>349</td>
</tr>
<tr>
<td>Shell Jackpine</td>
<td>7 958</td>
<td>361</td>
<td>222</td>
<td>7</td>
<td>215</td>
</tr>
<tr>
<td>Suncor</td>
<td>19 155</td>
<td>990</td>
<td>687</td>
<td>300</td>
<td>387</td>
</tr>
<tr>
<td>Syncrude</td>
<td>44 037</td>
<td>2 071</td>
<td>1 306</td>
<td>430</td>
<td>876</td>
</tr>
<tr>
<td>Total</td>
<td>151 863</td>
<td>6 951</td>
<td>4 407</td>
<td>820</td>
<td>3 587</td>
</tr>
</tbody>
</table>

*The project areas correspond to the areas defined in the project approval.
Cumulative bitumen production for Alberta in 2011 was 8.1 BB (1 294 MCM), with remaining established reserves of 169 BB (26 798 MCM) for crude bitumen (Table 1) (ERCB, 2012). The bitumen that was produced by surface mining was upgraded; in-situ bitumen production was marketed as non-upgraded crude bitumen (ERCB, 2012). Alberta bitumen production has more than doubled in the last decade, and is expected to increase to greater than 3 MB per day (> 0.48 MCM) over the next decade. Over the last 10 years, the contribution of bitumen to Alberta’s total primary energy production has increased steadily. A breakdown of production of energy in Alberta from all sources, including renewable sources, is given in Figure 6.

Alberta is Canada’s largest producer of marketable gas (71% in 2011) and of crude oil and equivalent production, and the only producer of upgraded bitumen (also called ‘synthetic crude oil’) and non-upgraded bitumen. Heavy oil is produced in both Alberta and Saskatchewan. Although there are oil-sands resources in northwestern Saskatchewan, as yet these have not been brought to commercial production. In Alberta, of the 2011 primary energy production, bitumen accounted for 78% of the total crude oil and raw bitumen production, with production increasing by 4% in surface mining areas, and by 13% from in-situ areas from the previous year. During this same time crude oil production increased by 7%, total marketable natural gas declined by ~ 5%, total natural

Table 7: In situ crude bitumen reserves in Alberta for areas under active development as of December 31, 2011 (from ERCB, 2012).

<table>
<thead>
<tr>
<th>Development</th>
<th>Initial volume in place (10^6 m^3)</th>
<th>Recovery factor (%)</th>
<th>Initial established reserves (10^6 m^3)</th>
<th>Cumulative production^6 (10^8 m^3)</th>
<th>Remaining established reserves (10^8 m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace River Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial projects</td>
<td>63.7</td>
<td>40</td>
<td>25.5</td>
<td>11.1</td>
<td>14.4</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>150.8</td>
<td>10</td>
<td>16.1</td>
<td>12.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Subtotal^2</td>
<td>224.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athabasca Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial projects</td>
<td>391.8</td>
<td>50</td>
<td>195.9</td>
<td>89.1</td>
<td>106.8</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>1 026.2</td>
<td>5</td>
<td>51.3</td>
<td>23.1</td>
<td>28.2</td>
</tr>
<tr>
<td>Enhanced recovery schemes^5</td>
<td>(289.0)^6</td>
<td>10</td>
<td>28.9</td>
<td>18.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Subtotal^7</td>
<td>1 418.0</td>
<td></td>
<td></td>
<td></td>
<td>145.0</td>
</tr>
<tr>
<td>Cold Lake Oil Sands Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal commercial (CSS)^7</td>
<td>1 212.8</td>
<td>25</td>
<td>303.2</td>
<td>226.6</td>
<td>76.6</td>
</tr>
<tr>
<td>Thermal commercial (SAGD)^8</td>
<td>33.8</td>
<td>50</td>
<td>16.9</td>
<td>2.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Primary recovery schemes</td>
<td>6 257.5</td>
<td>5</td>
<td>312.9</td>
<td>90.5</td>
<td>222.3</td>
</tr>
<tr>
<td>Subtotal^9</td>
<td>7 504.1</td>
<td></td>
<td></td>
<td></td>
<td>313.2</td>
</tr>
<tr>
<td>Total^10</td>
<td>9 146.6</td>
<td></td>
<td></td>
<td></td>
<td>476.4</td>
</tr>
</tbody>
</table>

^6 Thermal reserves reported in this table are assigned only for lands on which thermal recovery is approved and drilling development has occurred.
^7 Includes amendments to production reports.
^5 Any discrepancies are due to rounding.
^4 Schemes currently on polymer or waterflood in the Bitnet-Pelican area. Previous primary production is included under primary schemes.
^5 The in-place number is that part of the initial volume in place for primary recovery schemes that will see incremental production due to polymer or waterflood.
^2 Cyclic steam simulation projects.
^6 Steam-assisted gravity drainage projects.
gas liquids production remained flat, and coal production declined by 5%. By comparison, only about 0.2% of energy is produced from renewable energy sources, such as hydro and wind power.

Starting in 2010, total crude oil production downward trend in Alberta was reversed, with light-medium crude oil production increasing due to technological advances, such as horizontal, multi-stage drilling with hydraulic fracturing and/or acidization. This resulted in an increase of total crude oil production by 7% in 2011 (ERCB, 2012). Along with this technologically-driven increase in crude oil production, the ERCB (Rokosh et al., 2012; Beaton et al., 2013) conducted a regional resource assessment of crude oil in six of Alberta’s shale and siltstone-dominated formations, that pointed to a vast potential (best in-place estimates of 423.6 BB of crude oil; 3 424 TCF of natural gas; and 58.6 BB natural gas liquids) in tight formations, which until now were considered uneconomic due to challenges related to production from these low-permeability reservoirs. To date, these hydrocarbon estimates identify other (non-bitumen) unconventional resources in the province; but, how these relate to the total energy resource endowment of the province is not known until it is addressed if they are technologically or economically feasible to produce at large scales with existing or near-future resource technologies.

In the future, it is expected that the in-situ thermal production of bitumen will overtake the mined-production of bitumen in the province; with perhaps a modest rise in both conventional and tight-formation development – largely a result of improvements in multi-stage hydraulic fracturing from horizontal wells that are targeting these previously uneconomic (but potentially large) resources.
Resource Technology

As of December 2012, Alberta bitumen reserves under active development (mainly by surface mining, compare cumulative production in Tables 3 and 4) accounted for only 4.8% of the remaining established reserves of 169 BB (2.68 BCM) since commercial production began in 1967 (Table 1) (ERCB, 2012). In 2011, in-situ-production from all three oil-sands areas in Alberta grew by 12.7%, compared with a 4.1% increase in production for mined bitumen. If this present rate of production growth is maintained, it is expected that in-situ production will overtake mined production by 2015 (ERCB, 2012).

Unlocking the huge potential of the remaining bitumen resources in Alberta will require enhancing other in-situ technologies. The most commonly used in-situ technologies are Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS). SAGD and CSS utilize considerable energy and water to produce steam; also required are good permeability (both vertical and horizontal), relatively thick pay zones (> 10 m), and an absence of barriers (cemented zones, thick laterally-continuous shales) and the lack of significant top/gas, top/lean or bottom water thief zones. Generally the cross-bedded sands of lower point bar depositional environments are characterized by vertical permeability ranging from 2 to 6 Darcie (D). Associated inclined heterolithic stratification (IHS) from upper point bar deposits exhibit a 2 to 3 order of magnitude decrease in permeability, and siltstone in abandoned channel and point bar strata exhibit a 2 to 3 order-of-magnitude decrease in permeability (Strobl et al., 1977; Strobl, 2007, Strobl, in press). Depositional heterogeneities at vertical and lateral scales influence bitumen recovery from in-situ processes.

A comprehensive, two-volume edition book entitled: “Handbook on theory and practice of bitumen recovery from Athabasca oil sands” (Masliyah et al., 2011) focuses on the extraction of bitumen from oil sands mainly using surface mining methods, and also includes a chapter on in-situ processes. Volume I covers the basic scientific principles of bitumen recovery, froth treatment, diluents recovery, and tailings disposal; Volume II is devoted to industrial practices (editor, Jan Czarnecki, at jc7@ualberta.ca). Some of the focus of recent in-situ technology and advances includes:

- Integration of future oil sands technology with that of emerging oil shale co-production in the western United States.
- New developments concerning in-situ recovery and underground refining technologies for oil sands in western Canada include underground combustion and refining.
- Use of Cold Heavy Oil Production with Sand (CHOPS) as a specialized primary type of production where progressive cavity pumps assist in lifting bitumen and sand to the surface, and utilize this sand production to create wormholes in the strata to increase permeability in the reservoir. Liberatore et al. (2012) examined alternative seismic methods for in-situ monitoring of CHOPS heavy oil recovery. Seismic modeling indicates that signature of wormholes developed during CHOPS production can be detected.
• Search for alternative sources of energy for steam production, including the use of nuclear energy in conjunction with in-situ oil sands production plants (Peace River, Alberta).

• Further development and integration of technologies that include solvent co-injection, electro-magnetic heating, wedge (in-fill) wells, in-situ combustion, hot-solvent gravity drainage, Supercritical Partial Oxidation (SUPOX), and various hybrid developments, including CO₂ flooding (Rudy Strobl, Nov. 14, written communication).

• In the San Joaquin Basin, California, two solar steam heavy oil recovery demonstration projects have been operating since 2011. One is a Chevron-Bright Source Energy partnership in the Coalinga field. The other is a Berry Petroleum Co.-GlassPoint Solar partnership in a McKittrick field block.

Critical technology needs include enhancing current methods and developing new more-environmentally-friendly methods of extraction, production, and upgrading of oil sands. Emphasis of surface mining operations is on reclamation of tailings and consolidated tailings, and on re-vegetation of open-pit mine sites. In early February 2009, the Energy Resources Conservation Board (ERCB) issued Directive 074 that outlines new cleanup rules and harsh penalties for non-compliance regarding tailings ponds regulations for the oil sands areas. This directive resulted from the ERCB acknowledgment that, although operators invested heavily in improved tailings reduction strategies, targets set out in the original development applications have not been met. Firm performance criteria are defined for reclaiming the tailings ponds, with performance inspections, and subsequent penalties due to neglect, omission, or commission.

Most of the bitumen resources are extracted by in-situ technologies (mainly thermal, such as Steam Assisted Gravity Drainage and Cyclic Steam Stimulation). Because there is significant co-production of greenhouse gases with bitumen production and upgrading, critical technology needs involve research into: 1) alternative sources of heat for generation of steam (e.g., geothermal, nuclear, burning of slag); 2) methods to reduce the viscosity of the bitumen so it will flow to the well bore or through pipelines more easily (such as use of diluents, catalysts, microbial and nanotechnology); 3) underground in-situ extraction, refining, and upgrading; and 4) co-sequestration of greenhouse gases by injection into abandoned reservoirs or other deep geologic sites. There was in the past an excess supply of produced sulfur, above what was used in agricultural and other markets. Excess sulfur is stockpiled from bitumen and sour gas production and refining. Produced and stored sulfur is sold to various markets, the largest being China, mainly converted to sulfuric acid for use in manufacturing phosphate fertilizer (ERCB, 2012).

Environmental Issues

The primary environmental issues relate to the balance among greenhouse gas emissions and water/energy usage and the recovery, production and upgrading of bitumen. Specifically, the critical environmental focus is how to cleanly, efficiently, and
safely extract, produce, and upgrade the bitumen. Goals include reducing (1) energy required to heat the water to steam and (2) CO₂ emissions. Current greenhouse gas emissions are decreasing and remaining emissions are compensated for by carbon trading and (or) CO₂ sequestration; and (3) improving the economics and processes of extraction, production and upgrading of the bitumen. Some of the areas of focus include

- Land reclamation in surface mining
- Tailings and consolidated tailings disposal and reclamation
- Bitumen upgrading and co-production of other products from tailings (such as vanadium, nickel, and sulfur)
- In-situ recovery
- Underground refining.

Oil sand developers in Canada are focused on reducing CO₂ emissions by 45% per barrel by 2010, as compared to 1990 levels. Also in Canada, developers are legislated to restore oil sand mining sites to at least the equivalent of their previous biological productivity. For example, at development sites near Fort McMurray, Alberta, the First Nation aboriginal community, as part of the Athabasca Tribal Council, and industry have worked together to reclaim disturbed land (Boucher, 2012) and industry has reclaimed much of the previous tailings pond areas into grasslands that are now supporting a modest bison herd (~ 500 – 700 head).

EMD Oil (Tar) Sands Technical Sessions, Publications, and other Products

AAPG Studies in Geology 64 entitled “Heavy-oil and Oil-Sand Petroleum Systems in Alberta and Beyond” is available from the AAPG Bookstore (Internet: bookstore@aapg.org). It is a combination hard-copy and CD publication, with 160 pages printed (3 chapters), and all 28 chapters in electronic form on the CD-ROM. This oil sands and heavy oils research includes presentations from the 2007 Hedberg conference in Banff, Canada titled “Heavy oil and bitumen in foreland basins – From processes to products.” Publication editors are Frances Hein, Dale Leckie, Steve Larter, and John Suter. Contained are 28 chapters (Appendix A) that encompass depositional settings of oil sands and heavy oil accumulations, reservoir characterizations, geochemical characteristics of bitumen and of oil biodegradation, geologic and petroleum system modeling, petroleum reserves and resources, surface mining and in-situ production processes, such as SAGD, for accumulations in Canada, Russia, the United States, and Venezuela, and oil sands tailings and water use management.

The April, 2012 AAPG National Convention in Long Beach, California included an EMD-sponsored poster session titled “Heavy oil and oil shale.” This thermal-maturation cradle-to-grave theme included petrographic and stratigraphic features of oil shale and heavy oil sources and hosts, and production techniques for and fracture characteristics of heavy oil reservoirs. The Higley and Hein (2011) AAPG Natural Resources Research paper contained resource information on oil sands.
Heavy oil conferences and workshops scheduled in 2013-2014

May 7 Oil Shale & Oil Sands Development in the Western U.S. – University of Utah
Unconventional Fuels Conference Salt Lake City, Utah, USA www.icse.utah.edu

June 11-13 SPE International Heavy Oil Conference BMO Centre at Stampede Park, Calgary, Alberta, Canada www.spe.org/events/hocc/

July 2-4 SPE Enhanced Oil Recovery Conference Shangri-La Hotel, Kuala Lumpur, Malaysia www.spe.org/events/calendar/

July 23-25 Oil Sands Heavy Oil Technology Telus Conference Centre, Calgary, Alberta, Canada www.oilsandstechnologies.com

September 8-11 AAPG International Convention & Exhibition -Theme 3: Challenges in Heavy Oil Cartagena, Colombia www.aapg.org/Cartagena2013/

September 10-12 Oil Sands Trade Show and Conference Fort Mcmurry, Alberta, Canada www.oilsandtradeshow.com

September 24-26 Heavy Oil Latin America Congress Puerto Vallarta, Mexico www.heavyoillatinamerica.com

March 3-6, 2014 World Heavy Oil Congress New Orleans, Louisiana, USA www.worldheavyoilcongress.com

Selected References

Bellman, L., 2009, Improvements in oil sands reservoir characterization: Presentation and panel discussion, Canadian Heavy Oil Association, Beer and Chat, Petroleum Club, Calgary, AB, May 28, 2009: office@choa.ab.ca

Keyser, T., 2009, An answer at hand? Since the dawn of oil sands mining, the search has been on for a better way to deal with tailings. One answer could prove to be biopolymer beads small enough to hold in your palm: Business article in the PEGG, May 2009, p. 25: www.apegga.org.

http://energy.cr.usgs.gov/oilgas/addoilgas/WEC10NBEO.pdf

Perry, G. and Meyer, R., 2009, Transportation alternatives for heavy crude and bitumen: Canadian Heavy Oil Association, Beer and Chat, Petroleum Club, Calgary, AB, April 28, 2009: office@choa.ab.ca

Appendices

Appendix A: Chapter List – Frances J. Hein, Dale Leckie, Steve Larter, and John R. Suter, eds., 2013, Heavy-Oil and Oil-Sand Petroleum Systems in Alberta and Beyond: AAPG Studies in Geology 64.

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heavy Oil and Bitumen Petroleum Systems in Alberta and Beyond: The Future Is Nonconventional and the Future Is Now</td>
<td>Frances J. Hein, Dale Leckie, Steve Larter, and John R. Suter</td>
</tr>
<tr>
<td>2</td>
<td>The Dynamic Interplay of Oil Mixing, Charge Timing, and Biodegradation in Forming the Alberta Oil Sands: Insights from Geologic Modeling and Biogeochemistry</td>
<td>Jennifer Adams, Steve Larter, Barry Bennett, Haiping Huang, Joseph Westrich, and Cor van Kruisdijk</td>
</tr>
<tr>
<td>3</td>
<td>Geologic Reservoir Characterization and Evaluation of the Petrocedeño Field, Early Miocene Oficina Formation, Orinoco Heavy Oil Belt, Venezuela</td>
<td>Allard W. Martinius, Jan Hegner, Inge Kaas, Celia Bejarano, Xavier Mathieu, and Rune Mjøs</td>
</tr>
<tr>
<td>4</td>
<td>The Alberta Oil Sands: Reserves and Long-term Supply Outlook</td>
<td>Farhood Rahnama, Richard A. Marsh, and LeMoine Philp</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of Oil Generation Kinetics Derived from Hydrous Pyrolysis and Rock-Eval in Four-Dimensional Models of the Western Canada Sedimentary Basin and Its Northern Alberta Oil Sands</td>
<td>Debra K. Higley and Michael D. Lewan</td>
</tr>
<tr>
<td>6</td>
<td>Impact of Reservoir Heterogeneity and Geohistory on the Variability of Bitumen Properties and on the Distribution of Gas- and Water-saturated Zones in the Athabasca Oil Sands, Canada</td>
<td>Milovan Fustic, Barry Bennett, Stephen M. Hubbard, Haiping Huang, Thomas Oldenburg and Steve Larter</td>
</tr>
<tr>
<td>7</td>
<td>A Regional Geologic Framework for the Athabasca Oil Sands, Northeastern Alberta, Canada</td>
<td>Frances J. Hein, Graham Dolby, and Brent Fairgrieve</td>
</tr>
<tr>
<td>8</td>
<td>The Significance of Palynofloral Assemblages from the Lower Cretaceous McMurray Formation and Associated Strata, Surmont, and Surrounding Areas in North-central Alberta</td>
<td>Graham Dolby, Thomas D. Demchuk, and John R. Suter</td>
</tr>
<tr>
<td>9</td>
<td>Stratigraphic Architecture of a Large-scale Point-bar Complex in the McMurray Formation: Syncrude’s Mildred Lake Mine, Alberta, Canada</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 10. Depositional Setting and Oil Sands Reservoir Characterization of Giant Longitudinal Sandbars at Ells River: Marginal Marine Facies of the McMurray Formation, Northern Alberta Basin, Canada
Paul L. Broughton

Chapter 11. Advanced Seismic-stratigraphic Imaging of Depositional Elements in a Lower Cretaceous (Mannville) Heavy Oil Reservoir, West-central Saskatchewan, Canada
Sabrina E. Sarzalejo Silva and Bruce S. Hart

Chapter 12. Oil-saturated Mississippian–Pennsylvanian Sandstones of South-central Kentucky
Michael T. May

Chapter 13. Overview of Heavy Oil, Seeps, and Oil (Tar) Sands, California
Frances J. Hein

Chapter 14. Unconventional Oil Resources of the Uinta Basin, Utah
Steven Schamel

Chapter 15. Integrated Reservoir Description of the Ugnu Heavy-oil Accumulation, North Slope, Alaska
Erik Hulm, Greg Bernaski, Boris Kostic, Steve Lowe, and Rick Matson

Chapter 16. Overview of Natural Bitumen Fields of the Siberian Platform, Olenek Uplift, Eastern Siberia, Russia
Vladimir A. Kashirtsev and Frances J. Hein

Chapter 17. Multiple-scale Geologic Models for Heavy Oil Reservoir Characterization
Clayton V. Deutsch

Chapter 18. Modeling of a Tide-influenced Point-bar Heterogeneity Distribution and Impacts on Steam-assisted Gravity Drainage Production: Example from Steepbank River, McMurray Formation, Canada
Geoffray Musial, Richard Labourdette, Jessica Franco, Jean-Yves Reynaud

Chapter 19. Modeling by Constraining Stochastic Simulation to Deterministically Interpreted Three-dimensional Geobodies: Case Study from Lower Cretaceous McMurray Formation, Long Lake Steam-assisted Gravity Drainage Project, Northeast Alberta, Canada
Milovan Fustic, Dany Cadiou, Dave Thurston, Adal Al-Dliwe, and Dale A. Leckie

Chapter 20. Spectral Decomposition in a Heavy Oil and Bitumen Sand Reservoir
Carmen C. Dumitrescu and Larry Lines

Chapter 21. Fundamentals of Heat Transport at the Edge of Steam Chambers in Cyclic Steam Stimulation and Steam-assisted Gravity Drainage
Ian D. Gates, Marya Cokar, and Michael S. Kallos
Chapter 22. Integration of Steam-assisted Gravity Drainage Fundamentals with Reservoir Characterization to Optimize Production
Rudy Strobl

Chapter 23. Screening Criteria and Technology Sequencing for In-situ Viscous Oil Production
Maurice B. Dusseault

Chapter 24. New Progress and Technological Challenges in the Integral Development of the Faja Petrolifera del Orinoco, Venezuela
Teófilo Villarroel, Adriana Zambrano, and Rolando Garcia

Chapter 25. Trading Water for Oil: Tailings Management and Water Use in Surface-mined Oil Sands
Randy Mikula

Chapter 26. Potential Role of Microbial Biofilms in Oil Sands Tailings Management
Victoria Kostenko and Robert John Martinuzzi

Chapter 27. Geothermal Energy as a Source of Heat for Oil Sands Processing in Northern Alberta, Canada
Jacek Majorowicz, Martyn Unsworth, Tom Chacko, Allan Gray, Larry Heaman, David K. Potter, Doug Schmitt, and Tayfun Babadagli

Chapter 28. Joslyn Creek Steam-assisted Gravity Drainage: Geologic Considerations Related to a Surface Steam Release Incident, Athabasca Oil Sands Area, Northeastern Alberta, Canada
Frances J. Hein and Brent Fairgrieve

Appendix B: Web Links for Oil Sands/Heavy Oil Organizations and Publications

The following provides updates to the Members-Only Webpage located at http://emd.aapg.org/members_only/oil_sands/index.cfm.

Alabama Geological Survey website: http://www.gsa.state.al.us

Alaska Division of Geological and Geophysical Surveys: http://www.dggs.dnr.state.ak.us

Alberta Energy Resources Conservation Board (ERCB): www.ercb.ca

Alberta Chamber of Resources: www.abchamber.ca

Alberta Department of Energy: www.energy.gov.ab.ca

Alberta Department of Sustainable Resource Development: www.srd.alberta.ca
Alberta Innovates – Energy and Environmental Solutions:
www.albertainnovates.ca/energy/

Alberta Environment Information Centre: www.environment.gov.ab.ca

Alberta Geological Survey: www.ags.gov.ab.ca

Alberta Government: www.alberta.ca

Alberta’s Industrial Heartland Association: www.industrialheartland.com

Alberta Ingenuity Centre for In Situ Energy: www.aicise.ca

Alberta Innovation & Science: www.aet.alberta.ca

Alberta Research Council: www.arc.ab.ca

Alberta Sulphur Research Ltd.: www.chem.ucalgary.ca/asr

Athabasca Regional Issues Working Group: www.oilsands.cc

Bureau of Land Management – Details on the Oil Shale and Tar Sands PEIS:

Canadian Association of Petroleum Producers: www.capp.ca

Canadian Energy Research Institute: www.ceri.ca

Canadian Geoscience Council: www.geoscience.ca

Canadian Heavy Oil Association: www.choa.ab.ca

Canadian Institute of Mining, Metallurgy & Petroleum: www.cim.org

Canadian Petroleum Institute: www.cppi.ca

Canadian Society of Petroleum Geologists: www.cspg.org

Canadian Well Logging Society: www.cwls.org

CanMet Mining and Mineral Sciences Laboratories: www.nrcan.gc.ca

Careers: The Next Generation: www.nextgen.org

Climate Change Central: www.climatechangecentral.com
EnergyInet: www.energyinet.com

Environment Canada: www.ec.gc.ca

Fort McMurray Chamber of Commerce: www.fortmcmurraychamber.ca

Freehold Owners Association: www.fhoa.ca

Institute for Sustainable Energy, Environment and Economy: www.iseee.ca

International Energy Foundation: www.ief-energy.org

National Energy Board: www.neb-one.gc.ca

National Research Council’s Industrial Research Assistance Program: www.irap-pari.nrc-cnrc.gc.ca

Natural Resources Canada: www.nrcan-rncan.gc.ca

New Mexico Bureau of Geology and Mineral Resources: http://geoinfo.nmt.edu/index.html

Oil Sands Discovery Centre: www.oilsandsdiscovery.com

Petroleum Technology Alliance Canada: www.ptac.org

Petroleum Technology Research Centre: www.ptrc.ca

Saskatchewan Industry and Resources: www.ir.gov.sk.ca

Saskatchewan Government: www.ir.gov.sk.ca

Saskatchewan Research Council: www.src.sk.ca

Seeds Foundation: www.seedsfoundation.ca

Small Explorers and Producers Association of Canada: www.sepac.ca

Society of Petroleum Engineers: www.speca.ca
The Canadian Society of Exploration Geophysicists: www.cseg.ca

The Environmental Association of Alberta: www.esaa.org

U.S. Bureau of Land Management: www.blm.gov

Utah Heavy Oil: http://www.heavyoil.utah.edu/outreach.html; http://map.heavyoil.utah.edu/