Alsaab, D., M. Elie, A. Izart, R.F. Sachsenhofer, V.A. Privalov, I. Suarez-Ruiz, and L. Martinez, 2008, Comparison of hydrocarbon gases (C1-C5) production from
Carboniferous Donets (Ukraine) and Cretaceous Sabinas (Mexico) coals: International Journal of Coal Geology, v. 74, p. 154-162.

Anonymous, 2006, Geo-modeling of thin-bed coal reservoirs: An investor’s guide to coalbed methane, A supplement to Oil and Gas Investor, v. 26, no. 12, p. 28.

Ayers, W.B., Jr., and B.S. Kelso, 1989, Knowledge of methane potential for coalbed resources grows, but needs more study: Oil & Gas Journal, v. 87, no. 43, p. 64-67.
Ayers, W.B., Jr., S.K. Ruhl, M. Hoffman, J.A. Rushing, D.A. McVay, and R.I. Ramazanova, 2005, Low-rank coals of the Wilcox Group, east-central Texas: coalbed methane resources, potential for CO2 sequestration, and enhanced

Bao, Y., C. Wei, and B Neupane, 2016, Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos Basin, China: Journal of Natural Gas Science and Engineering, v. 28, p. 262-270.

Bertrand, G., 1984, Geochemical and petrographic characterization of humic coals considered as possible petroleum source rocks: Organic Geochemistry, v. 6, p. 481-488.

Bhattacharya, G., 2016, Natural gas, unconventional resources can assist India in meeting future energy demand: Oil & Gas Journal, v. 114.11, p. 46-51.

Brady, L.L., 2000, Kansas coal distribution, resources, and potential for coalbed methane: The Compass of Sigma Gamma Epsilon, v. 75, nos. 2 & 3, p. 122-133.

Breland, F.C., Jr., and P.D. Warwick, 2004, Coalbed methane (CBM) activity in Louisiana, in Coalbed methane in the Gulf Coast: Gulf Coast Association of Geological Societies/Gulf Coast Section SEPM, 54th Annual Convention, San Antonio, TX, Short Course No. 3.

Brown, P.J., W.J. Haskett, and P. Leach, 2006, Risk analysis approach helping operators see the light in unconventional plays: The American Oil & Gas Reporter, v. 49, no. 3, p. 84-93.

Decker, D., S.J. Jeu, J.D. Cooper, and D.E. Wicks, 1988, Geology, geochemistry, reservoir engineering, and completion methods at the Cedar Hill field, San Juan County, New Mexico: a field study of classic coal degasification behavior, in J.E. Fassett, ed., Geology and coal-bed methane resources of the northern San Juan basin, Colorado and New Mexico: Denver, Rocky Mountain Association of Geologists Guidebook, p. 221-235.

Fisher, J., 2005, CBM is the place to be: Supplement to Oil and Gas Investor, v. 25, no. 12, p. 2-7.

Ghosh, S., S.D. Golding, A.K. Varma, and K.A. Baublys, 2018, Stable isotopic composition of coal bed gas and associated formation water samples from

GRI, 1992, Cherokee basin, Kansas and Oklahoma: Quarterly Review of Methane from Coal Seams Technology, v. 9, nos. 3-4, p. 5.

Gürdal, G., and M.N. Yalçın, 2001, Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition: International Journal of Coal Geology, v. 48, p. 133-144.

Higgs, M.D., 1986, Laboratory studies into the generation of natural gas from coals, in J. Brooks, J.C. Goff, and B. van Hoorn, eds., Habitat of Paleozoic gas in N.W. Europe: Geological Society Special Publication 23, p. 113-120.

Holder, D., 2007, Admiral Bay finds the compression key that is unlocking eastern Kansas coals: American Oil & Gas Reporter, v. 50, no. 5, p. 104-114.

Jones, A.H., G.J. Bell, and R.A. Schraunfagel, 1988. A review of the physical and mechanical properties of coal with implications for coal-bed methane well

Kaiser, W.R., R. Tyler, W.A. Ambrose, A.R. Scott, and D.G. Patchen, 1992, Geologic evaluation of critical production parameters for coalbed methane resources:

Kędzior, S., 2009, Accumulation of coal-bed methane in the south-west part of the Upper Silesian coal basin (southern Poland): International Journal of Coal Geology, v. 80, p. 20-34.

Levine, J.R., 1992, Five common misconceptions regarding coalbed gas reservoir systems: Quarterly Review of Methane from Coal Seams Technology, v. 9, nos. 3-4, p. 36.

Levine, J.R., 1992, Oversimplifications can lead to faulty coalbed gas reservoir analysis: Oil & Gas Journal, v. 90, no. 47, p. 63-69.

Li, W., H. Liu, and X. Song, 2015, Multifractal analysis of Hg pore size distributions of tectonically deformed coals: International Journal of Coal Geology, v. 144-145, p. 138-152.

Li, W., Y.-M. Zhu, and Y. Liu, 2018, Gas evolution and isotopic fractionations during pyrolysis on coals of different ranks: International Journal of Coal Geology, v. 188, p. 136-144.

Liu, Y., Y. Zhu, S. Liu, and W. Li, 2018, A hierarchical methane adsorption characterization through a multiscale approach by considering the

Logan, T.L., 1988, Horizontal drainhole drilling techniques used in Rocky Mountain coal seams, in J.E. Fassett, ed., Geology and coal-bed methane resources of the northern San Juan basin, Colorado and New Mexico: Denver, Rocky Mountain Association of Geologists Guidebook, p. 133-141.

 http://www.dcnr.state.pa.us/topogeo/cbm/ofreport1101.aspx

Miyazaki, S., 2005, Coalbed methane growing rapidly as Australia gas supply diversifies: Oil & Gas Journal, v. 103.28, p. 32-36.

Oliver, S., 2002, Methane enrichment: World Coal, v. 11, p. 53-55. (CMM)

(biogenic methane)

Pope, J.M., 2005, Same day downhole critical gas content without the core (abstract): 2005 AAPG Mid-Continent Section Meeting, Final Announcement and Meeting Program, p. 25.
Priestman, A., 2009, Gas supply, coalbed methane matures: Oil and Gas Investor, v. 29, no. 6, p. 53-54.

http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/3a1.pdf
Reeves, S., 2002, Field studies of enhanced methane recovery and CO2 sequestration in coal seams: World Oil, v. 223, no. 12, p. 56-58, 60.

Salmachi, A., M. Rajabi, P. Reynolds, Z. Yarmohammadtooski, and C. Wainman, 2016, The effect of magmatic intrusions on coalbed methane reservoir characteristics:

Sever, M., 2006, Coalbed gas enters the energy mix: Geotimes, v. 51, no. 9, p. 30-33.

Sloss, L.L., 2015, Potential for enhanced coalbed methane recovery: IEA Clean Coal Centre, CCC/252, 41 p. (ECBM)

Solano-Acosta, W., A. Schimmelmann, M. Mastalerz, and I. Arango, 2008, Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: $^{13}C/^12C$ and $^{18}O/^16O$ implications for cleat origin and coalbed methane generation: International Journal of Coal Geology, v. 73, p. 219-236.

Sööt, P.M., 1991, Western United States coalbed methane gas content correlations, in
S.D. Schwochow, D.K. Murray, and M.F. Fahy, eds., Coalbed methane of
87-92.
Sosrowidjojo, I.B., and A. Saghafi, 2009, Development of the first coal seam gas
exploration program in Indonesia: Reservoir properties of the Muaraenim
Formation, south Sumatra: International Journal of Coal Geology, v. 79, p. 145-
156.
Sparks, D. P., S. W. Lambert, and T. H. McLendon, 1993, Coalbed gas well flow
performance controls, Cedar Cove area, Warrior Basin, U.S.A.: Tuscaloosa,
Alabama, University of Alabama, 1993 International Coalbed Methane
p.
origin in some coals from the English midlands: International Journal of Coal
Geology, v. 6, p. 107-125.
Specht, R.W., 2001, Coalbed methane potential of the Williston Basin, North Dakota, in
M.R. Silverman, ed., Emerging coalbed methane plays of North America:
Squaret, J., and M. Dawson, 2006, Coalbed methane expands in Canada: Oil & Gas
Staib, G., R. Sakurovs, and E.M.A. Gray, 2014, Kinetics of coal swelling in gases:
Influence of gas pressure, gas type and coal type: International Journal of Coal
Geology, v. 132, p. 117-122.
Part II: An assessment of previously proposed physical mechanisms of diffusion
Stanton, R., R. Flores, P.D. Warwick, H. Gluskoter, and G.D. Stricker, 2001, Coal bed
sequestration of carbon dioxide: National Energy Technology Laboratory First
http://www.netl.doe.gov/publications/proceedings/proceedings/01/carbon_seq/3a3.pdf
Stanton, R.W., R.M. Flores, P.D. Warwick, and H.J. Gluskoter, 2002, Sequestration of
carbon dioxide in low-rank coals (abstract): TSOP Abstracts and Program, v. 18,
p. 111.
ushers in deeper water, unconventionals, and more gas, in R.K. Merrill and C.A.
15-28. (3 CBM fields in Australia/China included in giant international
unconventional gas discoveries during 2000-2009; p. 27)
Stasiuk, L.B., P.D. Warwick, and E.M. Caddel, eds., 2006, Proceedings from coal bed
methane—Back to the basics of coal geology: Bulletin of Canadian Petroleum
Stayton, R.J., 2002, Horizontal wells boost CBM recovery: American Oil & Gas
Reporter, v. 45, no. 8, p. 71-75.
Stayton, R.J., 2005, Drilling technologies optimize development of unconventional
plays: American Oil & Gas Reporter, v. 48, no. 9, p. 64-69.

Tedesco, S. A., 2004, Stratigraphic framework and architecture of the deltas of Pennsylvanian age in the Forest City and Cherokee Basins and their impact on coalbed methane production: Tuscaloosa, Alabama, University of Alabama,

Torkelson, D., 2009, Wyoming CBM permits slow to a trickle: American Oil & Gas Reporter, v. 52, no. 8, p. 121-123.

Wang, Z., X. Ma, J. Wei, and N. Li, 2018, Microwave irradiation’s effect on promoting coalbed methane desorption and analysis of desorption kinetics: Fuel, v. 222, p. 56-63.

Williams, P., 2005, China: Oil and Gas Investor, v. 25, no. 6, p. 32-45. (China CBM opportunities, p. 38-39)
Williams, P., 2005, Investing in CBM projects: Oil and Gas Investor, v. 25, no. 6, p. 79.

Yong, Q., and Y. Jianping, 2015, A review on development of CBM industry in China: AAPG Search and Discovery Article No. 90234, 5 p.

Zhao, L., Y. Qin, C. Cai, Y. Xie, G. Wang, B. Huang, and C. Xu, 2017, Control of coal facies to adsorption-desorption divergence of coals: A case from the Xiqu
Zhao, S., Y. Li, Y. Wang, Z. Ma, and X. Huang, 2019, Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing: Fuel, v. 244, p. 78-90.

