Quick-Look Chart for Evaluating Cross Sections in Contractional Settings

M. Scott Wilkerson, DePauw University

Abstract (from Wilkerson & Dicken, 2001)

For over thirty years, geologists and geophysicists have used balancing techniques to constrain their cross-sectional interpretations in detached contractional settings. The quality of the resulting interpretations often directly correlates to the quality of the data, the balancing and interpretational experience of the interpreter, and the time allotted for the interpretation. We “de-mystify” the balancing process and present quick-look techniques for quickly and effectively detecting and preventing common cross-section balancing errors in detached contractional settings. Common cross-sectional interpretation errors are highlighted through close analysis of hanging-wall and footwall ramps and flats; such analysis helps identify inconsistencies in the numbers of ramps and flats, in the strata and stratal thicknesses in corresponding ramps, and in displacement along the fault. These techniques possess the additional advantages of being useful at any stage of the interpretational process for time or depth sections and being easily comprehensible by students, geologists, geophysicists, and managers alike. The quick-look techniques, however, are not an all-encompassing panacea. They do not guarantee a unique and/or correct cross-section interpretation, and they do not explain or interpret potential problematic areas in the cross section that might require explanation and/or reinterpretation.

Assumptions for Quick-Look Techniques

• No movement in or out of the plane of the cross section.
• Constant cross-sectional area (i.e., no volume loss or differential compaction).
• No regional shear distributed through section (i.e., all units have experienced the same amount of hinterland shortening).
• No “hidden” bedding-parallel detachments (i.e., no interbed slip from outside the section along a bedding-parallel detachment).
• No out-of-sequence faulting or reactivation of faults.
• Non-metamorphic rocks.
• Fault slip is post-depositional (i.e., no growth section).
• Continuous sequence of strata (i.e., no major unconformities).

Quick-Look Checklist

1. Do the number of ramps and flats match in the hanging wall and footwall?
2. Does each hanging-wall ramp truncate the exact same strata as is truncated by the corresponding footwall ramp?
3. Assuming no synorogenic sedimentation, are strata in each hanging-wall ramp approximately the same thickness as strata in each corresponding footwall ramp?
4. Assuming that each hanging-wall and footwall ramp rests on a similarly-dipping fault segment, are their cutoff angles dramatically different?
5. Assuming no underlying footwall ramps of related faults, do strata in the hanging wall return to their “regional level”?
6. Does each flat in the hanging wall have approximately the same length as each corresponding footwall flat?
7. Do faults cut upsection in the direction of transport and place older beds over younger beds?
8. Does displacement magnitude and sense of offset vary consistently along each fault?

Inconsistent Number of Ramps & Flats

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Plausible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Footwall Ramps > Number of Hanging-Wall Ramps</td>
<td>Number of Footwall Ramps = Number of Hanging-Wall Ramps</td>
</tr>
</tbody>
</table>

Inconsistent Thickenesses in Hanging Wall and Footwall Ramps

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Plausible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanging Wall Above “Regional”</td>
<td>Hanging Wall Below “Regional”</td>
</tr>
</tbody>
</table>

Ramp & Flat Identification

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Plausible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir</td>
<td>Reservoir</td>
</tr>
</tbody>
</table>

Inconsistent Displacement along Fault

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Plausible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanging-Wall Flat Longer than Footwall Flat</td>
<td>Reversal of Offset along the Fault</td>
</tr>
</tbody>
</table>

Quick-Look Checklist

1. Do the number of ramps and flats match in the hanging wall and footwall?
2. Does each hanging-wall ramp truncate the exact same strata as is truncated by the corresponding footwall ramp?
3. Assuming no synorogenic sedimentation, are strata in each hanging-wall ramp approximately the same thickness as strata in each corresponding footwall ramp?
4. Assuming that each hanging-wall and footwall ramp rests on a similarly-dipping fault segment, are their cutoff angles dramatically different?
5. Assuming no underlying footwall ramps of related faults, do strata in the hanging wall return to their “regional level”?
6. Does each flat in the hanging wall have approximately the same length as each corresponding footwall flat?
7. Do faults cut upsection in the direction of transport and place older beds over younger beds?
8. Does displacement magnitude and sense of offset vary consistently along each fault?

Copyright © 2001 by M. Scott Wilkerson

Full Text: