Carbon Capture: Is It Ready for Prime Time?
See inside.
In Upstream

Staying ahead of the curve means integrating people, data, workflows and more so investors don’t just buy a story but value your innovative future.

How will you connect the dots?

Redefine your future and wisely navigate global market changes – anticipate risks, evaluate opportunities, and optimize investments with Upstream Solutions by S&P Global Commodity Insights.

spglobal.com/upstream

S&P Global
Commodity Insights
T
this month I would like to publicly thank and commend two groups. First, there is quite a long list of volunteers who have envisioned, codified, and are now giving their final touches to a new set of proposed bylaws for AAPG that are more simple and streamlined, compared to our current tangled spaghetti of operational and procedural minutiae. As you read this, our House of Delegates should be wrapping up its informal comment period, leading to a final version and official House review commencing around the end of March. A huge amount of time, energy and talent went into every step – see the accompanying sidebar for the list of just the most recent set of names. Please do thank them for their dedicated service when you see them.

Second, I recently attended the annual International Petroleum Technology Conference, which is a joint program of AAPG, the European Association of Geoscientists and Engineers, the Society of Exploration Geophysicists and the Society of Petroleum Engineers. There were more than 32,000 attendees(!) at the enormous exhibit floor, general assembly room and bank of 15 smaller technical meeting rooms, all overseen by hundreds upon hundreds of volunteers who ensured the meeting flowed smoothly. Volunteers also ran day trips before the meeting to provide visitors a fine overview of the area geology and general sights. Many thanks to all who gave their time and talents to this massive undertaking!

Reflection on Volunteering

For my main topic this month I would like to reflect on the history, meaning and personal interests while also making a difference when you see them. The word itself is from the French, based on a Latin root meaning “voluntary, of one’s own choice.” But why would anyone offer to do something without being forced to do it, or without getting paid for it? At least in modern times, there are a variety of benefits and any one of us likely has his own mix of motivations. Grouping them together, volunteering may give:

- A sense of purpose and a sense of belonging to something greater than yourself
- Opportunities to make new friends and/or new contacts that could help your personal advancement
- A chance to improve your social skills and/or gain new job skills
- A boost to your self-confidence and self-esteem for your accomplishments
- A stress release from your day-to-day grind
- A chance to have fun pursuing your personal interests while also making a difference

See President’s Column 4.

'TV' is for Volunteer

Volunteers involved in the programs and committees are not easily able to mutually support each other. In fact, they might not even know that synergies with other volunteer activities exist.

President’s Column

A visualization generated by artificial intelligence (DALL-E 3 AI) for the prompt “Businessmen and businesswomen in a big pile of messy spaghetti photorealistic”
Executive Committee Candidate Slate Has Expanded

The officer candidate slate for the 2024-25 AAPG Executive Committee has expanded to include a petition candidate, and voting is scheduled to begin later this spring.

Candidate slate: The proposed slate includes a president-elect, president, vice president—sections, vice president—treasurer, and treasurer. The person elected president-elect will serve one year and then be AAPG president for 2025-26. The terms for the vice president—sections and treasurer posts are for 2024-26.

Complete biographical information for all candidates is available online and included in this issue of the EXPLORER (see pages 22-25). Video conversations with the candidates will be available online as the election begins. Voting will open March 28 on the AAPG website. Voting ends May 15.

The candidates are:
- **President-Elect**
 - P-E Term: 2024-25
 - Jeff Aldrich, Squirrel Deriv, Austin, Texas.
- **President**
 - Term: 2025-26
 - Brian Horn, Hatteras Energy Group, Houston.
- **Vice President—Sections**
 - Term: 2024-26
 - Julian Chenin, Bluware, Houston.
 - Lorena Moscardelli, Bureau of Economic Geology, Austin, Texas.
- **Treasurer**
 - Term: 2024-26
 - Rebecca Caldwell, Chevron, Houston.
 - William Fairhurst, Riverford Exploration, Denton, Texas (petition candidate).

SCHEDULED TOPICS

Visit https://library.seg.org/INT-special-sections for more details about these sections.

NOVEMBER 2024
- Understanding the subsurface helium system to advance helium exploration and development
 - Submission deadline: 1 MAR 2024
 - Special-section editors: Vsevolod Egorov, Duncan Bannister, Dallas Dunlap, Pablo Gristo, Sougata Halder, Nicole Hart-Wagoner, Rachelle Kernen, Austin, Texas.

FEBRUARY 2025
- Energy diversification: Natural resources beyond fossil fuels
 - Submission deadline: 15 MAR 2024
 - Special-section editors: Vsevolod Egorov, William Abriel, Sunday Amayoed, Philip Ball, Kirsten Barnister, Dallas Dunlap, Pablo Gristo, Savornin, Sougata Halder, Nicole Hart-Wagoner, Rachelle Kernen, Russel Roundtree, Shane Smith, and Jennifer Turner

AUGUST 2024
- Recent advances in reservoir characterization
 - Submission deadline: 1 DEC 2023
 - Special-section editors: Runhai Feng, Dongfang Qu, Kenneth Bredesen, Siua Wu, Andrey Klimushin, Salinder Chopra, and Klaus Mosengard

MAY 2025
- Humansphere and near-surface geophysics
 - Submission deadline: 1 JUL 2024
 - Special-section editors: Huyen Bui, Ehsan Jamali Hondori, Toshinori Kimura, Hirotaka Mikada, Kyouke Okamote, and Veronica Pazzi

Have an idea for a section topic?

To suggest a topic for future special sections, e-mail interpretation@seg.org or contact one of the editors.

Interpretation is a peer-reviewed journal copublished by SEG and AAPG to advance the practice of subsurface interpretation. Papers will be published online as they are accepted, edited, and composed, with issues printed quarterly in February, May, August, and November. Each issue contains at least one special section covering a topic of interest to interpreters. General submissions also are welcome in addition to submissions targeted to the topics above.

E-mail interpretation@seg.org to inquire about submitting manuscripts past the submission deadline. Some sections may have increased flexibility regarding submission and review dates.

To submit a paper, visit https://mc.manuscriptcentral.com/interpretation and select the appropriate topic from the manuscript type options. For submissions not associated with a special section, select “Technical Paper.”

President from page 3

I am sure every one of us has volunteered for something at some point—what motivates you?

Streamlining and Synergy

This self-reflection is relevant to the proposed streamlined bylaws for AAPG because our ability to harvest the full benefits will depend upon our membership stepping up. Apparently, over the years as we added more and more detail, requirements and paperwork to our processes and procedures, we tended to hand them off to our paid staff to figure them out and make them run. And because even similar programs and committees are organizationally disconnected from each other, staff have to support each one individually, volunteers involved in the programs and committees are not easily able to mutually support each other. In fact, they might not even know that synergies with other volunteer activities exist. We have ended up with a large overhead cost to run a basket of activities that is highly dependent upon staff to operate.

The vision for AAPG in the new proposed bylaws includes simplification—first, because it strips out many decades of accumulated must-dos. When the Procedures manual is updated, we can put back in only the minimum we need for now and the future. Since the Procedures document only needs the Board to approve changes, we will be much more nimble in making adjustments as needed. Member volunteers can focus on the “fun stuff.”

Second, we can build a member interface that is more self-service oriented. Instead of picking up the phone or sending an email into headquarters, we envision an improved capability to figure it out or complete that task ourselves.

The proposed bylaws also include a reorganization around shared interests that transcend geographic boundaries. When all the related activities are grouped to roll up under the leadership of a director, the new transparency and organizational proximity enables member volunteers to find the synergies and help each other. And by seeing the program area as a whole, we can critically assess if we really need to continue all of our historical products and activities, or sunset some to focus on those most desired for today and into the future. What new products or activities will be attractive to the next generation of geoscientists and refresh our volunteer pipeline?

It might cause a bit of pain to let go of products and services that were important to us in our own early years, or “the way we have always done it,” but it is time for a paradigm shift in how we run our business to make AAPG fit for the future.

If you are not currently actively volunteering, I hope that these changes will catch your attention and bring you back, for all the personal reasons in the list of bullets above and for the betterment of AAPG.

In sum, I hope you are following along as we progress the various improvement projects underway and will be ready for another “V” as well: to cast a vote—an informed vote—on new proposed bylaws around mid-year, if the House of Delegates allows them to move forward. As always, please do send your questions and comments to ReMagine@aapg.org—I read each one with care.

Until next month,
Claudia Hackbart
A growing desire for lower emissions and a sustainable energy future has unleashed record levels of private sector investment and government funding creating an unprecedented concentration of global carbon capture, utilization, and storage projects.

As hosts of Carbon Capture, Utilization, and Storage (CCUS) 2024, from 11–13 March at the George R. Brown Convention Center in Houston, Texas, SPE, AAPG and SEG, have engaged technical experts from all aspects of the carbon capture lifecycle to explore the latest CCUS work and address related challenges and opportunities.

Much like our industry, this event has sparked exponential growth doubling in size year over year since its inception in 2021 establishing one of the fastest growing events in the CCUS arena. CCUS 2024 in Houston looks to build upon this success and will continue to be the industry’s leading event for CCUS management and development.

Register Today! Don’t miss the best chance you’ll have to gain insights into the technical and business aspects surrounding CCUS.
The ‘Necessity and Urgency’ of CCUS

International commitments to reduce emissions, a continued reliance on fossil fuels, government regulations and economic incentives have increased worldwide interest in carbon capture, utilization and storage, the process of capturing CO₂ and repurposing it for other uses or storing it in geological formations like depleted oil and gas reservoirs or aquifers.

The thirst for CCUS expertise has attendees flocking to conferences like the AAPG, Society of Petroleum Engineers and Society of Exploration Geophysicists’ CCUS Conference in Houston, which has doubled in attendance each year since its inception in 2020.

The 2024 event, coming to the George R. Brown Convention Center on March 11-13, provides a platform for industry, government and academic leaders to share insights and expertise for carbon management.

Each day starts with a keynote talk from speakers who have diverse backgrounds and career paths but agree on the necessity and urgency of deploying CCUS in the United States and beyond.

High-Profile Acquisitions

The opening keynote features Chris Kendall, former president and CEO of Denbury Inc., an independent Plano-based oil and natural gas company purchased by ExxonMobil for $4.9 billion in July 2023.

Kendall joined Denbury in 2010 as chief operation officer and was appointed CEO in 2017. He led the company until the merger with ExxonMobil closed in early November 2023.

Leading an early adopter of CO₂ projects was one of the most enjoyable parts of Kendall’s tenure at the company, he said. “While Denbury was small compared to many other energy companies, our unique focus on CO₂ enhanced oil recovery gave us an edge over the entire industry in CO₂ expertise and infrastructure. This put Denbury in a position of leadership when CCUS policy incentives in the United States were increased to meaningful levels beginning in the 2019-2020 timeframe,” he said. “I thoroughly enjoyed being part of a company that could truly make a difference in this important, new industry.”

Denbury’s entry into CCUS started in 1999 when CO₂ ECR is a key form of CCUS, so expanding into other facets of CCUS, such as CO₂ sequestration in deep saline aquifers, was a natural extension of the work they had been doing.

“CCUS is an essential piece of the carbon management puzzle,” important for achieving global climate goals. She noted that the technology has other applications beyond the oil and gas sector.

“CCUS is a key part of decarbonization for power generation and also for the industrial sector, such as hydrogen, cement and steel,” she said.

Raddatz said she looks forward to meeting with a variety of sectors at the CCUS event in Houston.

“This conference brings together organizations and individuals who share a passion for CCUS implementation. Their skillsets and experience are important to ensure CCS projects are deployed safely and efficiently,” she said. “This conference provides a wonderful opportunity to network, to share ideas, and learn from others. With participants from a wide variety of backgrounds including industry, government, academia and interest groups, there’s an opportunity to learn about CCS from various perspectives.”

Raddatz said while she is honored to share DOE’s role in CCS deployment with this audience, she looks forward to hearing what others have to say.

“I hope to learn about the challenges project developers are facing and see some examples of how roadblocks have been addressed and overcome,” she said.

Partnerships

Shared knowledge and multisectoral alliances are key themes in the March 13 keynote address to be delivered by Charles “Chuck” McConnell, executive director for Carbon Management and Energy Sustainability at the University of Houston Center of Carbon Management and Energy.

The Center is designed to meet the lower cost of CO₂ injection of CO₂, but through that work, I got to apply my geology background in new ways, and I learn something new every day,” she said. “It has been exciting to watch the industry grow and develop in recent years, and to be a part of building something from the ground up.”

Raddatz said geoscience is vital to characterize CO₂ potential and ensure the safety of CO₂ storage operations, and geoscientists interested in pursuing CCS careers find closely linked opportunities and challenges.

“We’re seeing an unprecedented scale and pace of deployment since the Bipartisan Infrastructure Law and the Inflation Reduction Acts were passed,” she said. “In this environment, geoscientists are facing the challenge and the opportunity to expand their skillsets to learn new tools, methodologies and new topics that were not a part of their repertoire previously.”

Raddatz described CCS as “an essential piece of the carbon management puzzle,” important for achieving global climate goals.

She noted that the technology has other applications beyond the oil and gas sector.

“CCUS is a key part of decarbonization for power generation and also for the industrial sector, such as hydrogen, cement and steel,” she said.

Raddatz said she looks forward to meeting with a variety of sectors at the CCUS event in Houston.

“This conference brings together organizations and individuals who share a passion for CCUS implementation. Their skillsets and experience are important to ensure CCS projects are deployed safely and efficiently,” she said. “This conference provides a wonderful opportunity to network, to share ideas, and learn from others. With participants from a wide variety of backgrounds including industry, government, academia and interest groups, there’s an opportunity to learn about CCS from various perspectives.”

Raddatz said while she is honored to share DOE’s role in CCS deployment with this audience, she looks forward to hearing what others have to say.

“I hope to learn about the challenges project developers are facing and see some examples of how roadblocks have been addressed and overcome,” she said.

Partnerships

Shared knowledge and multisectoral alliances are key themes in the March 13 keynote address to be delivered by Charles “Chuck” McConnell, executive director for Carbon Management and Energy Sustainability at the University of Houston Center of Carbon Management and Energy.

The Center is designed to meet the lower cost of CO₂ injection of CO₂, but through that work, I got to apply my geology background in new ways, and I learn something new every day,” she said. “It has been exciting to watch the industry grow and develop in recent years, and to be a part of building something from the ground up.”

Raddatz said geoscience is vital to characterize CO₂ potential and ensure the safety of CO₂ storage operations, and geoscientists interested in pursuing CCS careers find closely linked opportunities and challenges.

“We’re seeing an unprecedented scale and pace of deployment since the Bipartisan Infrastructure Law and the Inflation Reduction Acts were passed,” she said. “In this environment, geoscientists are facing the challenge and the opportunity to expand their skillsets to learn new tools, methodologies and new topics that were not a part of their repertoire previously.”

Raddatz described CCS as “an essential piece of the carbon management puzzle,” important for achieving global climate goals.

She noted that the technology has other applications beyond the oil and gas sector.

“CCUS is a key part of decarbonization for power generation and also for the industrial sector, such as hydrogen, cement and steel,” she said.

Raddatz said she looks forward to meeting with a variety of sectors at the CCUS event in Houston.

“This conference brings together organizations and individuals who share a passion for CCUS implementation. Their skillsets and experience are important to ensure CCS projects are deployed safely and efficiently,” she said. “This conference provides a wonderful opportunity to network, to share ideas, and learn from others. With participants from a wide variety of backgrounds including industry, government, academia and interest groups, there’s an opportunity to learn about CCS from various perspectives.”

Raddatz said while she is honored to share DOE’s role in CCS deployment with this audience, she looks forward to hearing what others have to say.

“I hope to learn about the challenges project developers are facing and see some examples of how roadblocks have been addressed and overcome,” she said.

Partnerships

Shared knowledge and multisectoral alliances are key themes in the March 13 keynote address to be delivered by Charles “Chuck” McConnell, executive director for Carbon Management and Energy Sustainability at the University of Houston Center of Carbon Management and Energy.

The Center is designed to meet the lower cost of CO₂ injection of CO₂, but through that work, I got to apply my geology background in new ways, and I learn something new every day,” she said. “It has been exciting to watch the industry grow and develop in recent years, and to be a part of building something from the ground up.”

Raddatz said geoscience is vital to characterize CO₂ potential and ensure the safety of CO₂ storage operations, and geoscientists interested in pursuing CCS careers find closely linked opportunities and challenges.

“We’re seeing an unprecedented scale and pace of deployment since the Bipartisan Infrastructure Law and the Inflation Reduction Acts were passed,” she said. “In this environment, geoscientists are facing the challenge and the opportunity to expand their skillsets to learn new tools, methodologies and new topics that were not a part of their repertoire previously.”

Raddatz described CCS as “an essential piece of the carbon management puzzle,” important for achieving global climate goals.

She noted that the technology has other applications beyond the oil and gas sector.

“CCUS is a key part of decarbonization for power generation and also for the industrial sector, such as hydrogen, cement and steel,” she said.

Raddatz said she looks forward to meeting with a variety of sectors at the CCUS event in Houston.

“This conference brings together organizations and individuals who share a passion for CCUS implementation. Their skillsets and experience are important to ensure CCS projects are deployed safely and efficiently,” she said. “This conference provides a wonderful opportunity to network, to share ideas, and learn from others. With participants from a wide variety of backgrounds including industry, government, academia and interest groups, there’s an opportunity to learn about CCS from various perspectives.”

Raddatz said while she is honored to share DOE’s role in CCS deployment with this audience, she looks forward to hearing what others have to say.

“I hope to learn about the challenges project developers are facing and see some examples of how roadblocks have been addressed and overcome,” she said.

Partnerships

Shared knowledge and multisectoral alliances are key themes in the March 13 keynote address to be delivered by Charles “Chuck” McConnell, executive director for Carbon Management and Energy Sustainability at the University of Houston Center of Carbon Management and Energy.

The Center is designed to meet the lower cost of CO₂ injection of CO₂, but through that work, I got to apply my geology background in new ways, and I learn something new every day,” she said. “It has been exciting to watch the industry grow and develop in recent years, and to be a part of building something from the ground up.”

Raddatz said geoscience is vital to characterize CO₂ potential and ensure the safety of CO₂ storage operations, and geoscientists interested in pursuing CCS careers find closely linked opportunities and challenges.

“We’re seeing an unprecedented scale and pace of deployment since the Bipartisan Infrastructure Law and the Inflation Reduction Acts were passed,” she said. “In this environment, geoscientists are facing the challenge and the opportunity to expand their skillsets to learn new tools, methodologies and new topics that were not a part of their repertoire previously.”

Raddatz described CCS as “an essential piece of the carbon management puzzle,” important for achieving global climate goals.

She noted that the technology has other applications beyond the oil and gas sector.

“CCUS is a key part of decarbonization for power generation and also for the industrial sector, such as hydrogen, cement and steel,” she said.

Raddatz said she looks forward to meeting with a variety of sectors at the CCUS event in Houston.

“This conference brings together organizations and individuals who share a passion for CCUS implementation. Their skillsets and experience are important to ensure CCS projects are deployed safely and efficiently,” she said. “This conference provides a wonderful opportunity to network, to share ideas, and learn from others. With participants from a wide variety of backgrounds including industry, government, academia and interest groups, there’s an opportunity to learn about CCS from various perspectives.”

Raddatz said while she is honored to share DOE’s role in CCS deployment with this audience, she looks forward to hearing what others have to say.

“I hope to learn about the challenges project developers are facing and see some examples of how roadblocks have been addressed and overcome,” she said.
institutions who are preparing the next goal for the CCME and other educational explained.

and transformative business approaches,” he said. “Getting solved by transformative technology then it starts to get difficult. And the difficulty do a few things that you can talk about easily, the radar screen for everybody. And after you going to have a lower carbon footprint. It’s on

and the investment community that they’re made commitments to their shareholders or steel manufacturing – all of them have

gas or petrochemicals, electric power, cement and the existing workforce can be better equipped so that students can get the jobs that they’re going to move into: good jobs, important jobs, that are going to change the world.”

“I’ve told many of our students, ‘You don’t have to go work for Google or Amazon to change the world. Go to work in these industries who are a part of it. That’s where you’re going to see the high tech, that’s where you’re going to see all the transformational automated intelligence we hear about. That’s where emissions are going to be reduced,” he explained.

“Moving the needle on emissions reduction requires all of our efforts to get

to the secretary of energy, who offered him a job.

“The next thing you know, I got an invitation to go to Washington, which was the last thing in the world I would have ever expected to do. But it was three years of a wonderful learning experience for sure,” he said.

McConnell served as assistant secretary of energy from 2011-13 and later returned to Houston, where he has worked in industry and academia ever since.

Being Good Stewards

McConnell said his experience in business, government and academia has led to a pragmatic approach to emissions reduction.

“We can debate all day long about climate change and how much of it is from anthropogenic CO2 and everything else. I choose not to get involved in those conversations because I believe it’s just a good thing to do – to be good stewards of how much carbon you put into an atmosphere. Arguing about it to me seems like a colossal waste of time,” he said.

“What I find more important is that many of these companies – and whether it’s oil and gas or petrochemicals, electric power, cement or steel manufacturing – all of them have made commitments to their shareholders and the investment community that they’re going to have a lower carbon footprint. It’s on the radar screen for everybody. And after you do a few things that you can talk about easily, then it starts to get difficult. And the difficulty gets solved by transformative technology and transformative business approaches,” he explained.

Developing those approaches is a key goal for the CCME and other educational institutions who are preparing the next generation of industry leaders. “We’re trying to get students and educational materials into the marketplace so the existing workforce can be better equipped so that students can get the jobs that they’re going to move into: good jobs, important jobs, that are going to change the world,” McConnell said.

“I’ve told many of our students, ‘You don’t have to go work for Google or Amazon to change the world. Go to work in these industries who are a part of it. That’s where you’re going to see the high tech, that’s where you’re going to see all the transformational automated intelligence we hear about. That’s where emissions are going to be reduced,” he explained.

During his talk at the CCUS event, McConnell will share results from a CCME whitepaper that focuses on identifying the future need for infrastructure, workforce and supply-chain investment needed for CCUS development, based on different emission reduction targets for 2050.

CCUS as a Requirement

He also plans to share the message that CCUS deployment is no longer a choice for industry.

“The International Energy Agency, the Intergovernmental Panel on Climate Change and all the other science based organizations that we’re all supposed to pay attention to – not just when it’s convenient, but all the time – state that 15 to 20 percent of the world’s emissions reductions must come from CCUS between now and 2050,” he said, “That’s not suggesting that CCUS is an option; what it’s stating clearly is that it’s a requirement.”

McConnell said that successful CCUS implementation requires an industry-wide, global focus.

Start planning your participation at the next edition of the Business & Exploration Opportunities Show (BEOS) taking place 26–27 March 2024 at the Business Design Centre, Islington, London.

BEOS is an important multifaceted platform at a critical time, to reach out to a wide and diverse audience of stakeholders in the International Upstream Exploration and Business development/New Ventures part of the Industry. The two day show will cover the ongoing financial, commercial and people related Transition impact on Oil and Gas but as importantly allow for showcasing and marketing of opportunities and Exploration assets/prospects across two streams each day. In addition, sessions will cover a variety of themes from Resource holder overviews to UKCS Fiscal updates, Panel Energy debates and Technical/Commercial case histories.

BEOS will bring together many of the Oil & Gas Majors, NOCs, Independents, E&P Companies and Governments. It also attracts attendees from many of the world’s leading banks, financiers, advisors, and law firms thereby providing a unique and unmatched opportunity to network and develop new business opportunities.

Stay tuned for more exciting announcements coming in the next weeks.
What Will It Take to Get CCUS Ready for Prime Time?

I f countries begin to require CO2 capture to help offset carbon emissions, is the energy industry prepared? Is carbon capture, utilization and storage ready for prime time?

Despite years of research and investment, CCUS currently sequesters only a small fraction of the world’s CO2 output. Most scientists still see carbon capture as a work in progress.

"In the current landscape of CCUS, significant advancements have been made yet there remains ample room for further improvement," noted Nihal Darraj, CCS (carbon capture and storage) researcher at Imperial College, London.

"At present, the state-of-the-art in CCUS reflects a dynamic blend of progress and ongoing investigation across multiple fronts," she added.

Darraj will be the moderator for the panel discussion "Policies for Success in CCUS" at the AAPG-Society of Petroleum Engineers-Society of Exploration Geophysicists’ 2024 CCUS meeting in Houston this month. The meeting’s technical program shows just how much additional research is needed, in multiple areas, before carbon capture makes its prime-time debut.

Presentations at CCUS 2024 will include research into CO2 capture methods, transport, storage site selection, reservoir analysis, seals, injection, sequestration geochemistry, pluming, seepage and leakage, modeling, monitoring and much more.

Cost Barrier

In addition to technical challenges, the expense of carbon capture is often cited as a significant obstacle for CCUS implementation. According to the International Energy Agency, capture costs can range from $15 to $25 per metric ton for industrial processes producing highly concentrated CO2 streams. But capture costs go as high as $150 per metric ton of CO2 for processes with more dilute gas streams, and direct air capture methods are even more expensive.

"Cost remains a critical barrier to widespread CCUS deployment, necessitating continued research and innovation to drive down costs and improve economic viability," Darraj observed.

"Additionally, regulatory frameworks and public support play a critical role in incentivizing CCUS adoption and fostering investment in carbon capture and storage infrastructure," she added.

Omer Tahir, regional manager and energy transition specialist for Hunting Energy Services, will moderate the panel session "Challenges Across the CCUS Value Chain" at CCUS 2024. Tahir said two-thirds of current CCUS project cost is from the dehydration or purification of point-source CO2.

"That is mainly due to the bottleneck presented by transportation medium. Research is ongoing and needs further improvement with regard to storage wells being able to accommodate all sorts of chemistries and impurities, especially when CCS hubs are desired. New material choices are being presented to OpCos (operating companies) to consider," he said.

Other commercial aspects of carbon capture will be addressed at CCUS 2024, including the March 13 keynote presentation, "CCUS Commercial Deployment: What Will It Take to Make It Happen?" The scheduled speaker is Charles McConnell, executive director for carbon management and energy sustainability at the University of Houston.

"In addition to technical gaps, a solid commercial model is the need of the hour for CCUS projects to kick off globally. At the end, it is business and numbers (that are) needed to make sense for capital markets and investors," Tahir said.

According to the latest report from the Global CCS Institute, 41 carbon-capture projects currently operate worldwide, with another 26 under construction and 325 in advanced and early development stages. That reported projects in operation have a CO2 capture capacity of 49 million metric tons per year, while total potential capture capacity has expanded to 361 million metric tons per year. But not all of the proposed carbon-removal projects will be funded and completed. Wood Mackenzie, an energy consultancy and research firm, tracks 100 or so proposed, commercial-scale CCUS projects and estimates that about half have a good chance of progressing.

That 2023 capture capacity of 49 million metric tons compares to an estimated annual global CO2 output of more than 37 billion metric tons, or in gigatons – 37.55 gigatons in 2023, according to the global data and business intelligence platform Statista.

Getting Ahead of the Learning Curve

The outlook is improving. Ongoing research has resulted in significant technical advances for CCUS, especially in capture technology and storage reliability.

Wood Mackenzie predicted that several novel carbon-capture technologies will enter commercial scale this year. The prospect of highly secure, long-term CO2 storage is much more likely now than just a few years ago.

"One notable aspect of current CCUS efforts is the maturation of capture technologies, with various methodologies being developed and deployed at industrial scale. Advances in solvent-based, membrane-based and solid sorbent capture systems have showcased promising efficiency and scalability," Darraj observed.

"Additionally, emerging technologies such as direct air capture offer novel avenues for carbon removal," she noted. However, direct air capture remains an extremely expensive form of carbon removal. The World Resources Institute has estimated DAC costs today at $250-$600 per metric ton.

"Significant progress has been made in the development of robust and secure CO2 storage solutions. (An) enhanced understanding of geological storage formations, coupled with advancements in monitoring and verification techniques, has bolstered confidence in the feasibility and safety of long-term CO2 storage."

Getting Ahead of the Learning Curve

One criticism of CCUS has come from fossil fuel opponents, who claim that CO2 injection is being used primarily to enhance oil production. In a larger view, CCUS has the problem of costing money without many ways of generating revenue. But that might be changing.

"In terms of utilization, there has been a growing emphasis on exploring diverse pathways for CO2 utilization beyond traditional applications in enhanced oil recovery," Darraj commented.

"From the production of synthetic fuels and chemicals to the utilization of CO2 in concrete and mineralization processes, the landscape of CCUS utilization is expanding, driven by innovation and market demand," she noted.

Some countries and regulatory agencies, including the European Union, are already considering carbon-capture requirements as part of their CO2-reduction strategies. The proposals could involve a level of mandatory CCUS to help offset Scope 1 emissions, those from sources that a company owns or controls directly.

In early February, the European Commission released its new climate goals. It recommended that EU member countries reduce greenhouse-gas emissions 90 percent by 2040, compared with 1990 levels. An editorial in the journal “Nature” commented:

"The 2040 interim target was proposed by independent climate-science advisers to the EU, and it’s good to see their proposal being implemented. But the advisers also cautioned that getting to 90 percent by including CCS technologies will be challenging. The biggest obstacle is that the technology is not ready."

Tahir said an issue with the current state-of-the-art of CCUS is “that we do not have (the) liberty of a learning curve.” It will take a more extensive implementation of carbon capture efforts before that ladder becomes available.

"That is where the holdup is. Processes are slow. Permit applications are taking time. The whole value chain is being designed and crafted with a conservative mindset," he said.

Is CCUS ready for prime time? The answer appears to be, “Not quite yet.” Progress has been made in carbon capture, Darraj observed, but "ongoing research and development efforts are essential to address remaining challenges and unlock the full potential of CCUS as a viable climate mitigation strategy."
How to Make Carbon Sequestration Commercial

If there is any hope of reducing the concentration of CO₂ in the atmosphere and limiting additional emissions, CCS and CCUS will be a "critical component of any decarbonization strategy."

That is according to George Koperna Jr., vice president of Advanced Resources International, Inc.

To clarify, the difference between carbon capture and storage and carbon capture, utilization and storage is that the former is primarily concerned with the trapping of the carbon dioxide and sequestering it — typically deep underground, while the latter deals with how the sequestered carbon can be used in other, more productive applications.

The capture and sequestration industry in the United States has been around since 1972, and more than 50 years later, according to the Global CCS Institute, some 21 million tons of carbon — about 0.34 percent of the nation’s emissions — have been removed and stored. Most of it has been transported on the approximate 5,000 miles of CO₂ pipeline throughout the country. Estimates, though, are that more than 1 billion tons of CO₂ need to be sequestered here in the United States to get to a net-zero emissions goal.

Internationally, according to Statista, a global data and business intelligence platform, the amount of CO₂ captured accounts for only 0.12 percent of annual global emissions.

Koperna, who is also an expert in both carbon storage and enhanced oil recovery, understands the enormity of the undertaking.

"The challenges are diverse," he said. "How CCS and CCUS proceed and who will lead the way — who will do the heavy sequestering, if you will — depends on the ability and interest of the oil and gas industry, according to the Office of Fossil Energy and Carbon Management within the U.S. Department of Energy.

And that’s where all the moving parts involved need to work together. According to the DOE, “While significant progress is being made, the industry needs to see a strong business case for CCUS. In addition to developing policies that promote investment in CCUS, DOE is investigating new ways to extract an economic benefit or additional value from captured CO₂. At the end of the day, deploying CCUS commercially requires continued public/private collaboration.”

The ABCs of CCUS

The very acronym — “CCUS” — is where the understanding of the process should begin, said Koperna. He means that literally.

"Let’s start with the C," he said.

Koperna believes the carbon captured from low-purity sources like cement and power generation is the “holy grail.”

"If you drive the costs down for this activity, we would be flush with CO₂ to store and use in products, as the low-purity sources (fossil fuel-based flue gases, for instance) tend to be higher-volume CO₂ sources (fossil fuel-based flue gases, for instance) tend to be higher-volume CO₂ emitters," he said.

"High-purity CO₂ sources involve ethanol, amonia, hydrogen, ethylene, and gasification production.)

The captured CO₂ is then compressed and transported by pipeline, ship, rail or truck to be used in other applications that can use the trapped gas.

If it only were that easy.

Both CCS and CCUS share the same three challenges.

First, the physical challenge: The source-sink link. How far is the distance between the source and the sink? The greater the distance, the more extensive the operation.

This leads to the second challenge: economics. The bulk of the cost structure is in the capture, the expense of which is based on a function of concentration.

Here’s where CCS and CCUS differ most significantly. CCS has only costs (taking CO₂ off an industrial point source and sequestering), but without revenue opportunity other than, say, regulatory incentives, it isn’t always cost-effective. CCUS, however, provides that value. The more sophisticated the technology, the more utilization can occur.

Regulation is the third challenge. Pipeline construction is difficult enough, having to traverse around a regulatory maze, but adding CO₂ injection and storage, which requires even more monitoring, verification and reporting adds even more challenging layers to the process.

Koperna knows the costs have to fall. He said the next hurdle in the CCUS chain is transportation of the carbon — the “T” in the CCUS paradigm.

"There is no ‘T,’ obviously, in the acronym, but there should be. ‘Costs are high here, too,’ he said of transportation, “but it’s the non-technical issues that tend to be overwhelming. Storage tends to be the lowest on a cost per kilogram basis, so the CCS package needs to be cost effective under the incentive structure to make it go.”

Koperna, who has more than 20 years of experience in evaluating subsurface reservoirs, explained that if the cost of supply-chain issues (compressors, steel tubulars for pipelines and wells, chrome tubulars for wells) on top of items that are already high cost, there are going to be significant challenges. These challenges are mitigated if you don’t have to move the captured CO₂.

"Where capture can be situated over storage, the cost component disappears (a good thing) and there is no need to move the CO₂ via pipeline," he said.

That scenario doesn’t always present itself, however.

Cutting through the Red Tape

He said it is in the non-traditional oil and gas areas, which align with where many of the ethanol producers are in the United States, that make CCUS the "lightening rod to the public.”

More immediately, he said, "Regulatory efforts need to cut the time down for the industry.”

To wit, at the present time, it is now taking states four years to garner primary incentives from the U.S. Environmental Protection Agency. This would allow them to permit the wells rather than wait for federal approval. Specifically, with a Class VI UIC permits, states themselves could regulate injection of carbon dioxide for geologic sequestration purposes on their own.

Currently, North Dakota has shown it can, with pricamy, turn the permits around in about a year.

"So, state primacy may be the pathway to streamline the process," Koperna said.

"As more states get involved in CCUS, the regulatory process should ‘streamline itself’ and the timeframe will come down,” he added.

The North Dakota success notwithstanding, he hopes it can be reduced to 18 to 24 months.

This CCUS landscape, all phases of it, will be discussed at this year’s CCUS 2024 Houston, specifically in a session entitled “Challenges Across the CCUS Value Chain.”

Joining Koperna will be Fred Majkut, SLB; Rob Cordray, Rystad Energy, and David Mannon, IPT Well Solutions.

At the moment the pace of progress is picking up. Currently, according to the Congressional Budget Office, 15 CCS facilities are currently operational with an additional 121 facilities under construction or in development.
Persistent Prospects of the Permian

lots of geoscience remains to be done in the Permian Basin of West Texas and southeast New Mexico. Plenty of Permian prospects remain to be analyzed. And that might seem a little strange. Production from the basin began more than 100 years ago. The Permian is one of the most explored and drilled regions of the United States. But somehow, this long-time oil and gas producing area has once more emerged with new promise.

Diamondback Energy hammered that point home again in February when it announced a $26-billion deal with Endeavor Energy Resources LP to combine their Permian Basin resources.

Once the deal closes, Diamondback expects to have 816 million barrels of oil equivalent production per day and around $388,000 net acres. That includes approximately 6,100 prospective drilling locations with break-even below a $40 a barrel West Texas Intermediate oil price.

It was just the latest move in a sweeping Permian Basin consolidation. Last year, ExxonMobil agreed to buy Pioneer Natural Resources for more than $5 billion. Occidental Petroleum then announced its acquisition of privately held CrownRock LP for $12 billion.

All of that activity aims at building substantial positions in the Midland Basin area of the Permian, where Endeavor Energy’s horizontal drilling operations focused on Martin, Howard, Upton and Reagan counties of West Texas.

Unconventional resources development brought new exploration life to the Permian Basin by 2010, earning it designation as a super basin. But that was only the first phase of the basin’s resurgence.

During the following decade it became the mainspring of increased U.S. oil production, with most of the new crude output coming from the prolific Spraberry, Wolfcamp and Bone Spring formations, according to the U.S. Energy Information Agency.

Expanding Interest

Today, “you continue to see development of the Wolfcamp and the Leonardian sections” in the Permian, said Tim McMahon, light oil resource assessment project manager and principal investigator for the Bureau of Economic Geology at the University of Texas at Austin.

“Certainly, those have been of interest for some time, but we see some interest now in expanding that, going up into the Avalon (formation) in the Delaware Basin,” he noted.

The Barnett formation below the Wolfcamp also has drawn attention recently, this time for oil production potential. That play now spreads over several counties in West Texas, in the Midland Basin. And "there’s been some discussion: Do some of the Pennsylvanian rocks have potential in the deep basin?" McMahon said.

Above the Leonardian, “you also see some things going on in the Guadalupian section,” in the Delaware Mountain Group, Artesia Group and San Andres, he noted. Other Permian operators are targeting transition zone development, “where you get a lot of water but also a lot of oil,” McMahon said.

This is on the Central Basin Platform within the San Andres formation and includes both transition zones and residual oil zones. Companies are drilling horizontal wells to extract oil from the transition zone on the formation, usually using (enhanced oil recovery) techniques as well,” he observed.

"This has been going on since at least the mid-2010s, but shows how application of unconventional technologies can be used to produce additional hydrocarbons from old conventional fields," he added.

Ongoing Geoscience

Through its history, Permian exploration has demanded new rounds of geoscience. The Conventional Permian Basin lasted from about 1920 to 1970 and was analyzed using conventional interpretations.

As production went into decline, the Mature Conventional Permian emerged. Recovery geology and engineering began to dominate, until roughly 15 years ago. Then the Unconventional Permian Basin appeared, requiring a new approach.

Thirty years ago, Permian operators might dismiss formations that were too shaly or too tight. Today, some of those same formations are targets for development. In addition to recent work in the Barnett, potential zones of interest include the Avalon, Canyon, Clear Fork, Cline, Glorieta, Morrow, San Andres, Woodford, Yates and Yeso formations. Diamondback Energy had earlier reported evaluating two shale intervals within the Clear Fork for potential horizontal development, while noting that conventional pay intervals in the Pennsylvanian Strawn and Atoka formations could add significant reserves.

"I know there are people looking at the Avalon in the Delaware Basin and they may be looking at the equivalent Clear Fork in the Midland (Basin),” McMahon said.

"Clear Fork is one of the areas where the nomenclature gets really weird," he added. Disparity in stratigraphic nomenclature is nothing new in the U.S. Midcontinent region. In the Permian Basin, part of the issue involves the change from shelf to basin facies, McMahon said.

"The Middle and Upper Clear Fork on the Northwest Shelf and CBP are supposedly the time-equivalents of the Lower and Middle Spraberry in the Midland Basin, with the Glorieta equivalent to the Upper Spraberry," he noted.

"However, you will see the interval above the Upper Spraberry -- we use Upper Leonard for this -- sometimes referred to as Lower Clear Fork shale, with Glorieta and Upper Clear Fork above the Middle Leonard," he added.

In the Pennsylvanian section, the Wolfcamp D designation is commonly used within the industry, "but stratigraphic nomenclature would have that as the Cline shale. Below that, the Cisco may be locally named Tannehill, Croton or Stockwether, with similar local names within the Strawn," McMahon said.

"These changes make it difficult when mapping on a regional scale, which is a key component in evaluating resource potential and the focus of my group’s research," he said. "Where you still need some work is sorting out the stratigraphy as you go from the deep basin to that upper shelf," especially with steep sides to an uplift.

Ongoing work for geoscientists in the Permian includes deciphering the basin’s thermal maturity, which McMahon described as “challenging.”

"The thermal history’s a little bit unusual," for instance in the Delaware Basin, where the deepest zones may have been the hottest, he noted.

"It does appear to be uplifted, possibly tilted, and how does that affect how we look at it?" he said.

There’s also the question of nailing down reservoir and play extent: “These things in the Permian Basin don’t always have great lateral connectivity in the
Attend, Learn, Succeed! Aapg Global Training Events

4th Edition: Stratigraphic Traps of the Middle East
Al-Khobar, Saudi Arabia 14–6 Mar. 2024
The workshop will continue to provide opportunity for attendees to receive up-to-date knowledge about stratigraphic trap exploration of the Middle East covering the prolific Gulf region and surrounding areas, exposure to regional and global stratigraphic case studies. It is also an opportunity for all professionals to share state of the art-technologies utilized to detect and produce these complex yet-rewarding traps.

Carbon Capture, Utilization, and Storage (CCUS) 2024
Houston, Texas | 11–13 Mar. 2024
As hosts of the Carbon Capture, Utilization, and Storage (CCUS) 2024, 11–13 March 2024 at the George R. Brown Convention Center in Houston, Texas, the Society of Petroleum Engineers (SPE), the American Association of Petroleum Geologists (AAPG), and the Society of Exploration Geophysicists (SEG) are excited to once again join forces to offer the industry’s leading event for CCUS management and development. This meeting continues to be best chance you’ll have to gain insights into the technical and business aspects surrounding CCUS. Help lead the way for successful net-zero operations, developments, and opportunities.

AAPG Spring Student Expo
Norman, Oklahoma | 15 Mar. 2024
The School of Geosciences, with support from the AAPG Foundation, will be hosting the AAPG Spring Student Expo on Friday, March 15 at the National Weather Center in Norman, OK. The Expo will feature short courses, a scientific poster competition and networking with industry professionals.

AAPG/GEOS – Business & Exploration Opportunities Show (BEOS)
London, UK | 26–27 Mar. 2024
The Business Exploration Opportunities Show (BEOS) is a two-day event jointly conceived by the AAPG and the GEOSB, which brings together the best of APPEX and PROSPEx into one great show. BEOS is an important multifaceted platform at a critical time to reach out to a broad and diverse audience of stakeholders in the International Upstream Exploration and Business Development / New Ventures part of the industry.

GCAS/GCSEPM’s EDDOULF 2024
San Antonio, Texas | 10–12 Apr. 2024
AAPG Gulf Coast Sectional Conference in San Antonio, Texas. Technical Sessions, short courses, events, and field trips relating to most topics associated with Gulf Coast Geology.

Cross Regional Carbonates and Mixed Carbonate Systems Symposium Palermo, Italy | 22–24 Apr. 2024
This Symposium marks a collaborative event that brings together AAPG Europe and AAPG Middle East, with a central focus on carbonates and mixed carbonate systems worldwide, while highlighting their significance within these two regions. The primary objectives are an overview of controls that govern the evolution of these systems in time and space and the characterization and prediction of their properties across scales. Through overview presentations and case studies, the symposium will address these systems with emphasis on new scientific developments especially on exploration and characterization of the subsurface in the era of sustainability.

AAPG Southwest Section Annual Convention Abilene, Texas | 27–30 Apr. 2024
2024 SW/S AAPG Annual Convention
Join us in the key city for the 2024 SW/S AAPG Annual Convention hosted by the Abilene Geological Society. Stay tuned for more information coming soon.

Offshore Technology Conference (OTC) 2024
Houston, Texas | 1–9 May 2024
Since 1969, the Offshore Technology Conference (OTC) has served as a central hub convening energy professionals from around the world to share ideas and innovations, discuss, debate, and build consensus around the most pressing topics facing the offshore energy sector. Whether it’s oil and gas, solar, wind, hydrogen, and other marine resources, these conversations will be centered around the innovations that could help shift and drive the world’s energy mix.

Optimizing Exploration Workflows: Bridging Expertise between the Rockies and the Andes
Calgary, Canada | 9–10 May 2024
AAPG’s Canada and Latin America & Caribbean Regions invite you to join us for a geosciences technology workshop (GTw) that features a series of technical presentations, roundtable discussions, and networking opportunities with technical experts from throughout the Americas. The event is designed for geologists, geophysicists, technologists and business development professionals interested in exploring the potential for hydrocarbons and other resources in complex geological environments.

Latin America Carbon Capture, Utilization, and Storage (CCUS) 2024
Rio de Janeiro, Brazil | 22–23 May 2024
Plan now to be a part of the first SPE AAPG SEG event focused on CCUS potential in Latin America! Join us in Rio for a multidisciplinary program featuring technical presentations, panel discussions, keynote talks and an exhibition highlighting work, future challenges and opportunities for energy professionals in Carbon Capture, Utilization and Storage.

2nd Edition: Geological Process-Based Forward Modeling
Abu Dhabi, UAE | 27–29 May 2024
This workshop will bring together invited experts and interested researchers from both industry and academia to concentrate on all technical aspects related to geological process-based forward modeling. Six sessions spread over a period of 3 days will be dedicated to key challenges, finishing with a concluding session to define the best practical way forward.

AAPG Europe Regional Conference 2024
Krakow, Poland | 28–29 May 2024
On behalf of the Organizing and Advisory Committees, we invite you to join us in Krakow, Poland, for the annual AAPG European Regional Conference, to be held from 28–29 May 2024. This meeting will have sessions which fit the general geological setting of the Carpathians and its foreland in Poland but also the broader East European Craton including various Ukrainian basins with highlights on the salt tectonics, clastic, carbonate reservoirs and structural geology. Call for abstracts is now open.

Unconventional Resources Technology Conference (URTeC)
Houston, Texas | 17–19 Jun. 2024
The Unconventional Resources Technology Conference (URTeC) continues to be the best opportunity you’ll have to exchange information, formulate strategic ideas and solve problems to manage and optimize your unconventional resource plays. Leveraging from all technical backgrounds and disciplines, URTeC is critical to you and your business by delivering the science, technology, and commercial opportunities on what’s working with our current business environment.

From Frontier to Discoveries: Namibia’s Journey to Major Oil and Gas Discoveries
Houston, Texas | 17–19 Jun. 2024
The Unconventional Resources Technology Conference (URTeC) continues to be the best opportunity you’ll have to exchange information, formulate strategic ideas and solve problems to manage and optimize your unconventional resource plays. Leveraging from all technical backgrounds and disciplines, URTeC is critical to you and your business by delivering the science, technology, and commercial opportunities on what’s working with our current business environment.

AAPG Mid-Continent Section 6th Biennial Field Conference
Fort Hays, Kansas | 18–20 Oct. 2024
AAPG, Fort Hayes State University Geosciences and Kansas Geological Society host the 6th Biennial Field Conference, in conjunction with EAGE, AAPG and SEG societies aims to set up industry standards on reproducible AI and distributed key solutions on: data standardization and optimization, data quality, storage and model accuracy assessment, performance profiling, code optimizations, pervasive real-time and remote monitoring and more for advanced prototyping and delivery.

AAPG Energy Summit 2024
Uruguay | 19–21 November 2024
Plan now to join us in Uruguay for the Latin America and Caribbean Energy Summit, an executive level event connecting decision makers working to provide reliable, affordable, and sustainable energy for communities throughout the Americas and beyond. Enjoy keynote presentations and panel discussions with industry and government leaders who will share insights about E&P activities, decarbonization strategies, and technological advances shaping the region’s energy future. Meet privately with current and future partners at the Business-to-Business session held on-site during the event.

AAPG International Conference and Exhibition (ICE)
Muscat, Oman | 30 Sept.–2 Oct. 2024
Hosted by PDG, ICE 2024 will bring together a global audience of technical professionals, decision makers, academics and government representatives working in both the traditional oil and gas sector as well as on energy transition and sustainable development initiatives. Organized for the first time in the Middle East, the event can leverage Oman’s exploration and production plans and incredible geology and will offer a global and regional multidisciplinary technical program that covers the advance, innovation and discoveries in our industry.

AAPG/EAGE SEG Digitalization in Geosciences Symposium
Kobcar, Saudi Arabia | 21–24 Oct. 2024
The primary objective of this symposium is to facilitate knowledge sharing and collaboration among professionals who are engaged in implementing digitalization technologies and machine learning algorithms in geoscience applications. The joint effort of EAGE, AAPG and SEG societies aims to set up industry standards on reproducible AI and distribute key solutions on: data standardization and optimization, data quality, storage and model accuracy assessment, performance profiling, code optimizations, pervasive real-time and remote monitoring and for advanced prototyping and delivery.
Energy Economics and Technology: Did You Know There's a Committee for That?

F

or many years the Energy Economics and Technology Committee of AAPG's Energy and Minerals Division has been "a hidden resource under the AAPG umbrella," in the words of co-chair Jeremy Platt.

The Committee issues annual, sometimes biannual, reports. Because information relating to the Committee's panel meetings flows in on a daily basis, Platt said, the group focuses on important recent or sometimes historical events, rather than trade news or forecasting. Two reports available on AAPG's website from 2023, "Our contributors have included, from time to time, individuals with remarkable reputations in energy analysis. Having myself spent a nearly 40-year career working alongside such individuals, our approach has been to tap fine minds regardless of individuals' geoscience credentials or lack thereof," Platt said.

The Committee's latest submission, released late last year, is a departure of sorts, being broken down minute by minute focused on one topic: "Energy and Inflation."

"The topic of inflation and connections to oil have been on people's minds for a long time and not since the consumer summer 2022 spike in oil prices," said Platt.

Platt said it's no surprise that "as far as the general public is concerned and the tracking of big numbers, the story in the last 10 years is how many times and months by oil by gasoline at the pump. Yet it is interesting to see how some of the components have changed since the pre-pandemic year of 2020."

"By components? Gasoline, natural gas, electricity," he continued. "My own background was deeply involved in fuels used on a daily basis -- uraninite for several decades, natural gas, which had once been shunned. So it was quite interesting to learn that unlike oil and natural gas, from a consumer's point of view, electricity costs recently have just gone up and up, even though natural gas -- to which its wholesale costs are joined at the hip -- has been more sharply into its habitual very unattractive (from a producer's point of view) territory."

Origin Story of the Committee

The Committee began by the fall of 1998 after recommendations within EMD by Platt and Keith Murray (then EMD director) for executive actions. Its aim was to provide an avenue within AAPG to advance understanding of the interplay of energy markets and technologies of supply and demand. The means for doing this has been to tap experts with different backgrounds and perspectives, to organize topical sessions principally at annual meetings, and to develop annual reviews with commentary on selected themes and guidance on important references. The importance of providing this service owes to the essential need for energy in people's lives, the magnitude of shifting policies and fundamentals, the unease and uncertainty that never goes away, and the need to be a participant in discussions and learnings to stay on top of one's profession.

The group quickly began making significant contributions and continued to do so in the decades since.

"The Committee's first big splash," Platt said, "was a full-day forum at the 1999 annual meeting on 'Gas in the 'New Energy Market.' Natural gas was beginning to play a central role in the economics of power generation... The industries -- oil, gas and electric power -- were becoming tied together. Explosive advances in efficiency and cost-effectiveness of power generation technology, coupled with deregulation of that industry, led to burgeoning growth in the use of natural gas."

"Hydraulic fracturing wasn't on the radar yet, he explained, while natural gas and coal presented considerable uncertainties."

"Many were surprised that reserves of seemingly scarce natural gas were proving to be much greater than expected," said Platt.

"Past AAPG President Bill Fisher was one of the first to document this. And as today, coal generation was widely seen to face waves of regulatory hurdles, even though coal supply had undergone shock growth due to the phenomenal attributes of the Powder River Basin deposits. In a sense, the Powder River Basin had become, for coal, what the Permian Basin is today for U.S. oil and gas, if not more so."

Understanding Energy Economics

Energy economics can only be understood by bridging separate fields, Platt explained; be it geology and economics, exploration and engineering, and “with the advent and urgency of mobile and stationary energy storage, such disciplines as solid-state physics, electrochemistry and the outlook for the costs of battery materials and EV penetration.”

Still profound is the continuing interplay of natural gas and coal in the commodity market, both on a nearly seasonal basis and within the past decade, in response to gas’ superior economics.

The Committee has been a major force behind many important events, exploring emerging opportunities and controversies as they buffet the industry.

The Committee was a principal organizer of AAPG's 2012 Geosciences Technology Workshop in Golden, Colo., on "Hydraulic Fracturing – New Controversies, New Plays."

It organized the panel, "Energy Transition: Oil and Gas in the Crosshairs,", at the 2021-2022 meeting for Applied Geoscience and Energy, bringing perspectives from Wall Street finance, the auto industry and the power sector.

And it was with great anticipation that it organized a workshop and field trip to examine the special markets of natural gas liquid, centered on the pre-historic storage and price-setting hub just 30 miles east of downtown Houston, Mont Belvieu -- only to be scuttled by the pandemic.

As these few examples attest, energy economics and technologies are constantly changing, and it should not be surprising that the purview of the Committee remains at the forefront of critical issues in AAPG membership. This situation is ironic since, like many volunteer organizations, the Committee has always had difficulty engaging members to conduct the actual work, thus relying on a hidden resource under the AAPG umbrella," Platt said.

"Other major contributions from the Committee include 2022's review: 'Transition Framework and Questions.'"

"That deep dive on the energy transition, as noted, was issued in November 2022.

The review followed a very similar outline to one presented at the AAPG September 2021 annual meeting, when AAPG partnered with the Society of Exploration Geophysicists under the entity called "IMAGE," Platt said.

"That in turn was based on interviews and research throughout 2021, so that by November 2022 we had been pursuing this topic of the energy transition for over a year and a half and had exhausted all the low-hanging fruit and ourselves (and myself)."

"Another year has gone by, but I haven't seen anything to dislodge or replace the insights included in that major review," Platt added.

In the Market for Experts

The Committee's main goal, he said, is "to stay on top of a bucking bronco and remain relevant, continuing to deliver the understanding of complicated markets and other developments, and organize occasional topical sessions and other events."

"This year, it will be important to find co-workers and successors to keep up the work," Platt reiterated. "Those who have the connections, or can make and sustain them, to experts across industry and the consulting community will be a great asset. With such individuals, the Committee will continue to serve as a forum for learning, doing the work for those who don't have the time or position to do this all themselves but appreciate the destination. The notion of symbiosis is at the heart of this, namely providing forums shaped by individuals' professional needs, where they..."
New Kitchen, Many Chefs, Missing Ingredients

Oil / Transportation

An EV story – a mix of tech, regulatory-push and demand-pull
Down the road? Fuel cells, Biofuels, Alternate mobility – at scale?
What to watch? Batteries and other approaches to range anxiety.

Nat. Gas / Power Gen.

A messy story
Tried and true: Fuel switching (NG for coal) and Renewables
A cauldron of approaches: H₂ blending, low-C fuels, 4th Gen. (new) nuclear, Allam Cycle, transmission
What to watch? Carbon capture, long(er) duration storage, H₂

Continued from previous page

Hydrogen / Industry

A “test kitchen”
Industrial hubs as incubators
What to watch? Carbon capture, low-C fuels, H₂

Landscape of oil and gas in the energy transition

CCUS from page 7

CCUS deployed more broadly and to have global penetration, because doing projects in Europe and the United States is way too insufficient,” he said.

“Unless we get this to places like Indonesia, India and China, we’re not going to do anything with the climate. We will be a bunch of people in the developed world patting ourselves on the back for doing fun little science projects. That’s not what it’s about,” he said.

McConnell said international energy companies could be a part of the solution to global emissions reduction.

“International energy companies have that footprint all over the world. They operate everywhere, not just in Houston,” he said. “And many of these industries have many of the necessary capabilities and competencies to address issues associated with CO₂ emissions.”

Kendall agreed.

“Considering the skills, tools and infrastructure needed to develop CCUS projects, I can’t imagine an industry that is better suited to advance CCUS, whether it be subsurface modeling and analysis, drilling and operating CO₂ injection wells, or the development of pipelines and surface facilities,” he said.

Kendall looks forward to sharing Denbury’s story at the CCUS event in Houston on March 11.

“We are at a fascinating crossroads. Ever-increasing global energy demand is intersecting with the need to reduce global CO₂ emissions. CCUS can mitigate billions of tons of CO₂ emissions annually, but we are still in the early innings,” he said.

“Our industry is set to lead in CCUS, and I’m excited to share perspectives with the conference attendees.”

For information about the CCUS event and to register visit: CCUSEvent.org.
While scientists and workforces are becoming more at ease with the term “machine learning” and less reluctant to use these methods, there are still many uncertainties about their correct use and output understanding. Therefore, there is a need to explain what might be happening in the so-called “black boxes” and the potential causes for high errors and misclassifications. If not well understood, these issues can lead to incorrect interpretations and economic losses.

We would dare to say that 80 percent of any machine learning method, especially unsupervised, relies on input data preparation: the principle of “garbage in, garbage out” applies. So, it needs to be understood not only what kind of data it is, but how it can be optimized. The amount of data, their relationships and quality are just a few aspects to consider in order to do this. The first aspect is in focus here, since disparities in data (imbalance) can result in significant errors.

The term “imbalance” in data refers to the differences in proportions between classes. In this sense, the class that has the majority of records or instances will be called “negative class,” and the underrepresented or minority class will be named “positive class.”

Most of the geological settings we are used to studying are indeed imbalanced. Imagine a deepwater setting in which channel complexes are usually surrounded by shales in a major proportion, or as another example, a setting in which salt tectonics dominate and salt bodies will represent that negative class. Since a perfect dataset would only exist in a utopian world, we need to understand our data and how to optimize results without biasing or overfitting our models.

To understand the impact of the class imbalance we need to first understand the degree of imbalance between classes, and second, we need to understand the overlap between classes. The degree of imbalance (also known as IR) is obtained by relating the total number of negative class examples and the number of positive class examples. Figure 1 shows an example of how shale facies represent the majority of a training dataset (also known as MTD) used to predict deepwater channel facies. Here, five facies are used as labels. If we relate background “shale” to any of the other facies we would see that it doubles or triples them, creating an imbalanced dataset.

However, when we sum up all the channel facies and MTD, they will be almost proportional to the background shale, suggesting that we should simplify our labels.

The type of machine learning technique we intend to use should also be considered. Supervised methods count on error metrics given by the fact that input and output are known. However, in the case of unsupervised ML techniques, only the input is known, and the selection of the right number of clusters is still under debate. So, we will provide general guidance based on our experience on what to do with each type of method for seismic facies interpretation.

Unsupervised Methods and Imbalanced Data

When using clustering algorithms, such as k-means clustering, self-organizing mapping (SOM), and generative topographic mapping (GTM), it is suggested to use seismic attributes suitable for the geological target. Analyze their statistical relationships and refine them if necessary using a dimensionality reduction technique (for example, PCA, ICA, Shap values). Additionally, consider using a method such as an elbow plot to determine the optimal number of clusters. An elbow plot visualizes the relationship between the number of clusters and the explained variance, aiding in pinpointing where additional clusters yield diminishing returns in explaining the data’s structure. An example is shown in figure 2, which depicts results and error using a ML technique (GTM) with three clusters where five were expected. Notice how error is reduced by using an optimal cluster number determined by an elbow plot. This suggests that, although...
In development drilling, the Permian Basin development. The Delaware is typically defined as including all or parts of owning, Winkler, Ward, Reeves and Pecos counties in West Texas and Eddy and Lea counties in southeastern New Mexico, although parts of adjacent counties are sometimes included. McMahon said his agency had created a comprehensive, color-coded chart of wells drilled in the Permian by year. “You’ve got a lot more blank space in the Delaware (Basin). Even where it’s been drilled, the density isn’t as great,” he said.

In U.S. oil production, an obvious and maybe inevitable 2024 headline would read, “The Permian Basin Re-emerges – Again.” Because of the basin’s status as an exploration and production hot spot, companies have found it hard to put together any meaningful Permian acreage position without buying another operator. McMahon said he knows of one company from outside the United States that made a substantial effort to build a position in the basin, but ultimately was forced to give up. That bodes even more consolidation to come, with deeper pockets and deeper expertise driving future Permian Basin development.

Conclusions

To summarize the recommendations provided here, we have created an easy-to-follow workflow (Figure 3) that could be helpful for interpreters who are beginners in dealing with imbalanced data. No dataset will ever be perfect, so very accurate models should arouse suspicion because they will probably reflect bias or overfitting problems. Also, not every imbalanced dataset will necessarily result in poor training data. As geoscientists, we need to use the tools such as seismic attributes and ML techniques intelligently, be aware of our data’s limitations, apply best practices, including parameter optimization and, most importantly, recognize that in geology, nothing is perfect. Our understanding of the geological context and subsequent inferences still needs to be carried out. We believe that machines can’t fully replace us, at least not yet.

(Editors’ Note: The Geophysical Comer is a regular column in the EXPLORER, edited by Satinder Chopra, founder and president of SamiGeo, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer.)

Heather Bedle is an assistant professor in the School of Geosciences at the University of Oklahoma. As principal investigator of the Attribute Assisted Seismic Processing and Imaging Consortium, she is passionate about mentoring aspiring scientists and exploring the complex intersections of Earth, energy and environment. Holding a doctorate from Northwestern University, she leverages her industry and academic experiences to lead a prolific research group recognized for their interdisciplinary approach, seamlessly combining geoscience and data analytics to tackle complex scientific questions.

The use of correct statistical metrics:

- Receiver operating characteristic curve and area under the curve. ROC is used to analyze classifier performance by comparing the false positive rate on the x-axis versus the true positive rate on the y-axis. The closer the curve is to the upper-left corner, the better the classifier is. By calculating AUC, we can obtain a score for the classifier. A higher AUC score, closer to 1, indicates a good classifier with a geometric mean.

- Correlation matrix analysis via scatterplot. Discard perfect or imperfect correlations.

We recommend focusing on relatively large clusters rather than smaller ones that could be considered indicating a poor classifier. It’s important to note that these methods are designed for binary problems and not multiclass scenarios, which are common in seismic facies. When dealing with multiclass scenarios, we may need to evaluate ROC or AUC per class, and it becomes sensitive to class skew, as the negative class would be a combination of N-1 classes.

Some of the methods we can employ to address imbalanced datasets include:

- The use of simple algorithms such as DBscan or k-means clustering with realistic labels or minimum classes. Another option is the use of boosting algorithms (such as random forests) which assign different weights to the training distribution in each iteration. After each iteration, boosting increases the weights associated with the incorrectly classified examples and decreases the weights associated with the correctly classified examples.

- Oversampling or undersampling: oversampling refers to appending to the original data set, while undersampling involves the removal of data from the original dataset, typically from the majority or negative set, to achieve the same proportion or balance. However, this method could introduce its own set of problematic consequences, which can potentially hinder learning.

- Use of correct statistical metrics: A confusion matrix is a popular tool for understanding and evaluating classification problems. It compares actual or original vs predicted values. The main diagonal shows the samples that were classified correctly, while the other cells help us understand where and to what extent misclassifications occur. While accuracy is normally the metric evaluated in confusion matrices, it places more weight on common classes than on rare classes. This can make it challenging for a classifier to perform well on rare classes when evaluating imbalanced datasets. In such cases, it is recommended to use the F-score, which is a weighted harmonic mean between precision and recall. There is also a G score that, instead of a harmonic mean, uses a geometric mean.

- Receiver operating characteristic curve and area under the curve. ROC is used to analyze classifier performance by comparing the false positive rate on the x-axis versus the true positive rate on the y-axis. The closer the curve is to the upper-left corner, the better the classifier is. By calculating AUC, we can obtain a score for the classifier. A higher AUC score, closer to 1, indicates a good classifier with a top-left ROC curve. AUC lower than 0.5 can be considered as indicating a poor classifier. It’s important to note that these methods are designed for binary problems and not multiclass scenarios, which are common in seismic facies. When dealing with multiclass scenarios, we may need to evaluate ROC or AUC per class, and it becomes sensitive to class skew, as the negative class would be a combination of N-1 classes.

- The use of simple algorithms such as DBscan or k-means clustering with realistic labels or minimum classes. Another option is the use of boosting algorithms (such as random forests) which assign different weights to the training distribution in each iteration. After each iteration, boosting increases the weights associated with the incorrectly classified examples and decreases the weights associated with the correctly classified examples.

- Oversampling or undersampling: oversampling refers to appending to the original data set, while undersampling involves the removal of data from the original dataset, typically from the majority or negative set, to achieve the same proportion or balance. However, this method could introduce its own set of problematic consequences, which can potentially hinder learning.

- Use of correct statistical metrics: A confusion matrix is a popular tool for understanding and evaluating classification problems. It compares actual or original vs predicted values. The main diagonal shows the samples that were classified correctly, while the other cells help us understand where and to what extent misclassifications occur. While accuracy is normally the metric evaluated in confusion matrices, it places more weight on common classes than on rare classes. This can make it challenging for a classifier to perform well on rare classes when evaluating imbalanced datasets. In such cases, it is recommended to use the F-score, which is a weighted harmonic mean between precision and recall. There is also a G score that, instead of a harmonic mean, uses a geometric mean.

- Receiver operating characteristic curve and area under the curve. ROC is used to analyze classifier performance by comparing the false positive rate on the x-axis versus the true positive rate on the y-axis. The closer the curve is to the upper-left corner, the better the classifier is. By calculating AUC, we can obtain a score for the classifier. A higher AUC score, closer to 1, indicates a good classifier with a top-left ROC curve. AUC lower than 0.5 can be considered as indicating a poor classifier. It’s important to note that these methods are designed for binary problems and not multiclass scenarios, which are common in seismic facies. When dealing with multiclass scenarios, we may need to evaluate ROC or AUC per class, and it becomes sensitive to class skew, as the negative class would be a combination of N-1 classes.
Technical Presentations

THURSDAY MORNING, APRIL 11

Wildcattin’ Ain’t Dead Yet: The Next Wave of Prospecting on the Gulf Coast, USA
Co-chairs: Jon Rotzen and Laura Pommer, MAGNOLIA ROOM
8:00 Deborah Sacrey, INVITED - Cindy A. Yielding Honorary Lecture in Giant Discoveries: Grommino Wilcox Exploration Project
8:25 Barry Rana, INVITED - Houston Explorers Club Honorary Lecture: Subtle faults and future wildcats in the onshore Gulf Coast
8:50 Christopher Morley and Machelle Johnson, INVITED - Peter J. Lellis Memorial Lecture in Petroleum Geology: Achieving growth in a “Brownfield”: 7900” sand development in the Main Pass 41 Field
9:15 Robert Pascoe, INVITED - Roger M. Slatt Memorial Lecture in Deepwater Stratigraphy: The deep Miocene potential of the outer west Louisiana Shelf: An underexplored play
10:15 Richard Sears, INVITED - Cheryl Collarini Honorary Lecture in Exploration Economics and Risk: Exploration and wildcatting – risk in our business and what it really means
10:40 Chad Williams, David Lee, and Danny Williams: Technology triggered stranded assets, the new Wildcattin’
11:05 Selim Shaker: Exploring the missing blind zone in the Gulf of Mexico

Structure and Geomechanics of the Gulf Coast PECAN ROOM
Co-chairs: Molly Turko and John Cannon
8:00 David Ferrill, Gary R. Walter, Kevin J. Smart, and Adam J. Cawood: Fault zone control on groundwater flow in the Glen Rose Formation within the Hidden Valley fault zone, Comal Co., TX

Field Trips

8:25 Kevin Smart and David Ferrill: Geomechanical modeling of injection-induced deformation in the Eagle Ford Formation: Importance of mechanical stratigraphy and stress state
8:50 Selim Shaker: Geomechanics and drilling challenges in deep-water salt thrust fields, case histories from GOM
10:15 Selim Shaker: Pore pressure prediction geology and assessment
10:40 Adam Cawood, David Ferrill, and Kevin Smart: Mineralogy controls normal fault displacement and height in mechanically layered rocks at Hoover Point, central Texas
11:05 Roberto Wagner Alvaredo, Scott Wilkins, Stephanie Cook, Robert Holman, Robin Pearson, Abbey Hale, Grant Loston, Jonathan Woville, Jennifer Roberts, Wei Zheng, and Vincenzo De Giannaris: Advanced geomechanical modeling of stimulation induced stress change for casing deformation analysis

Critical metals (and Lithium) exploration value chain ELM ROOM
Co-chairs: Swapan Sahoo and Graham Spence
8:00 Eric Wolff: Introduction to exploration and mining of uranium in South Texas
8:25 Julie Blissom: Understanding the lithium content trends in the Smackover Formation: Potential influencing factors in the Ar-Ka-Lex Region
8:50 Shailees Bhattacharya, Shibka Sharma, Michael C. Das, Albert S. Wylie, and Tom Wagner: Potential lithium enrichment in pyrite from organic-rich shales
10:15 Christophr Smith, Timothy Smith, Patrick Gordon, and Michael Smith: Stratigraphic analysis of helium and other volatiles in legacy core samples; Lessons learned on exploration applications and how helium moves
10:40 Roxana Danar, Jean-Philippe Nicot, Bridget R. Scanlon, J. Richard Kyle, and Brent A. Elliott: Lithium in oilfield waters in Texas and neighboring states

11:05 Alex Zumbarber, Graham Spence, and Swapan Sahoo: The history and future of critical metals: Knowledge integration and future business direction

THURSDAY AFTERNOON, APRIL 11

Wildcattin’ Ain’t Dead Yet: The Next Wave of Prospecting on the Gulf Coast, USA
–SPECIAL DISCUSSION–
Co-chairs: Jon Rotzen and Laura Pommer, MAGNOLIA ROOM
1:00 - 2:15 Cindy Yielding and Susan Morrice: The wildcatter’s mindset: Come on cats … what will it take to bring out the “wild cat” in each of us?

Geology of the Gulf Coast (Part 1)
Co-chairs: Tom Ewing, MAGNOLIA ROOM
3:40 John Snedden, Chris M. Lowery, Timothy F. Lawton, and Tim Whiteaker: The End of the Cretaceous: Depositional palaeogeographic reconstruction of the Gulf of Mexico and adjacent areas just prior to the Chicxulub impact
4:30 Thomas Ewing: Tectonic setting and petroleum systems of the Seno Mexicano (South Texas and northeastern Mexico) - an initial synthesis
Geology and Exploration Opportunities of the East Texas Basin

Co-chairs: Hunter Carr and Casey clawson, PECAN ROOM

1:00 Will Pollard: Educated development of conventional reservoirs
1:25 QiQi Wang, Robert H. Lander, Linda M. Bonnell, and Stephen E. Laubach: Modeled rock properties through time and implications for fracture attribute developments in Travis Peak Formation Sandstone, East Texas

1:50 Pakar Manal, Casey Clawson, Nikiechi Odumado, and Santhosh Narashanam, Ben Chen, and Simon Hughes: Geomicrobiology and geomechanics to improve selection of horizontal landing zones - A case study in the Haynesville

3:15 William Ambrose: The shelf-to-lower-shelf transition in the Upper Midway Group in southeast Texas

3:40 Jeffrey Bridges and Julie Bloxson: Stratigraphic analysis of the Buda Limestone with implications on hydrocarbon production constraints; Madison and Houston Counties, TX

4:05 Richard Demne, Joshua Davidson, Marissa English, and Samantha Patterson: The Lower Cenomanian Minnies Shale of East Texas: Depositional patterns and hydrocarbon source potential

4:30 Robert Lounds, Kelly D. Hattori and Colton S. Spears: Stratigraphic and lithofacies framework of the Lower Cretaceous Pottet Formation (Wright Mountain Field) on northeastern flank of the East Texas Basin

Environmental and Geotechnical Technologies and Advancements

Chair: Jack Schickler and Bryan Fremly, ELM ROOM

1:00 Mustafa Saribudak: Adding value to client projects: A geophysical consultant’s field guide

1:25 James Stone: TCEQ Edwards Aquifer Protection Program Geologic Assessment: Methods, expectations, and a smooth review

1:50 Rebecca nunn, F. Paul Bertelli, Ronald T. Green, and Gordon Wittmeyer: Application of a geochemical framework for water resources management in a semi-arid, karst landscape; San Solomon Springs, Texas, USA

2:15 John Sharp: Subsidence caused by hydrocarbon production in the Austin Chalk and nearby fields, Southeast Texas

Geologic Carbon Storage on the Gulf Coast (BEG - Gulf Coast Carbon Center)

Chair: Alex Bump, ELM ROOM

3:15 Maria Paula Madariaga and Carlos A. Uroso: Assessment of the Wilcox Group for CO2 storage potential, in an area onshore South Texas

3:40 Alex Bump: Pressure Space: The key subsurface commodity for CO2

4:05 Timothy Mooman, Shuvajit Bhattacharya, QiQi Wang, and Katherine Yut: Potential for carbon sequestration in depleted Eagle Ford Shale Reservoirs

4:30 Jose Ubillus Alvacin: Laboratory experiments and modeling of the impact of small-scale heterogeneities on geologic carbon storage.

FRIDAY MORNING, APRIL 12

Eagleford and the Austin Chalk: Gifts that keep on giving!

Co-chairs: Tobi Larson and Eddie Velle, MAGNOLIA ROOM

8:00 David Tomer, Andrea Liberis, Carl Symcox, and Carolina Mayorga: Enhancing reservoir characterization and well placement optimization using chemical elemental compositions: A Texas case study

8:25 Wahid Rahman: Geochemistry and petroleum systems analysis of the Eagle Ford Shale from South Texas to East Texas

8:50 Richard Demne: The Woodbine-Eagle Ford depositional system revisited: What is the Woodbine?

9:15 Evan Shih, Robert G. Lounds, Lucy Ku, and Tobi Larson: A regional examination of the East Texas influence on Eagle Ford Group deposition across DREWIt County
From Outcrops to the Champs-Élysées: Petroleum Exploration in the Paris Basin

The Paris Basin, the ‘Island of France’

The Paris Basin is one of the world’s few basins that has been explored for petroleum for more than a century. Its exploration history is the second longest in France, after the Aquitaine basin. Despite modest 2P reserves of 345 million barrels of oil, 22 fields with reserves greater than 2 million barrels have been discovered and produced, thanks to the industry’s sustained interest. It has a fascinating philosophy and strategy of exploration and its story traverses many well-known Paris locales and other settings famous for their tourist sites, cheeses (Brie, Coulommiers) and for Champagne.

The sediments of the Paris intracratonic, oval or “saucer-shaped” basin, start with units of the Carboniferous and Permian (the Sarre-Lorraine basin). They become younger from the Mesozoic outcrops at the edges to Tertiary/Pleistocene strata approximately at the level of the city of Paris, in the Île-de-France region (the Island of France). The maximum thickness of 9,800-11,500 feet is found in the depocenter in the Brie area.

Getting Started

The story began with a well drilled in the 1920s in Normandy (on the western side of the basin) on a surface anticline along the deeply rooted Bray regional fault. It had no real positive indications of hydrocarbons. Then everything of interest happened in the post-WWII period.

In 1951 the Bureau de Recherches Pétrolières, a state agency, contracted the French Petroleum Institute (IFP) for geological field studies and a complete gravimetric survey. The elements of the petroleum system, a concept established later in the 1980s by Alain Perrodon, Gerard Demaison, Leslie Magoon and Wallace Dow, were anticipated by this field work. Bernard Duval, an engineer by training, was involved during the summer of 1956 as an intern in a field study conducted by Compagnie Française des Pétroles, now TotalEnergies. He and a team of three geologists studied outcrops all around the basin margins under party chief Jean-Marc Aymé. The work consisted of establishing a finely tuned stratigraphy (a practice new to Duval) and rock sampling for laboratory analysis, mostly from quarries. His effort focused on the Dogger carbonates and the Liassic organic-rich formations including the “Schistes Carton” which was visible, for example, in the fresh trenches of a freeway under construction at the time. It was a thankless, tedious job indeed.

Seeing him work passionately during a field visit, the chief of the Basin Studies Department, Jacques Dupouy-Camet, who was to become the exploration vice-president of the company, said to him, “My young friend, if you can withstand and even enjoy so much what you are doing here, so different from the grandiose and eventful geology of your Alpine training ground, you will surely become a petroleum geologist for many years to come!”

The VP got it right.

Interpretation of the field studies and a gravimetric survey suggested that Jurassic reservoirs that were Dogger, Hettangian and Rhaetian in age, and a good Liassic source rock could be expected in the 11,500-foot-thick sedimentary series resting on the Paleozoic.

In the euphoric period of its Saint-Marcet probe in the Aquitaine Basin (see Historical Highlights, May 2022), Régie Autonome des Pétroles was granted the 7,300-square-mile Chalons-sur-Marne permit. Société Nationale des Pétroles d’Aquitaine, which had just discovered the Upper Lacq oil field, was chosen for the Lorraine permit in the easternmost area.

RAP conducted seismic surveys and drilled a stratigraphic test well in 1953. They drilled Courgivaux-1 on a supposed gravimetric and seismic anomaly with oil shows in tight series of Bajocian and Rhaetian ages. Some geologists familiar with the Paris Basin would recall that this well exhibited an extended summary of its petroleum plays. RAP came back to the
Bray area in 1954, recognizing the 1000-foot downdip location of the 1920s well, and Pays-de-Bray-T1 found oil in a lenticular Jurassic reservoir. It produced only for a couple of months.

Late '50s: First Wave of Discoveries

Fresh licenses were granted to newcomers, including Petrorep, southeast of Paris, and CFP and FROPEX-DEP in the southern part of the basin. SNPDA decided to concentrate its efforts on the Triassic series. They found oil shows in Muschelkalk carbonate formations (Forcelles-1) and finally decided to partly relinquish their Lorraine permits in the eastern part of the basin.

This was a time for disappointments, but there was still a hint of optimism. Poor exploration results led the companies to calibrate near-surface seismic-velocity variations by using up-hole travel times from nearby shallow core holes. This enabled them to map structure more accurately by removing the effects of shallow low-velocity horizons.

This pragmatic approach became successful with modest discoveries in three plays. Dogger carbonates yielded field discoveries at Coulommiers, 1958 (16 million barrels of oil), Chailly-en-Bière, 1958 (10 million); Villemer, 1959 (5 million), Brie-Chartrettes, 1959 (4 million) in the vicinity of Chalais and other fields (less than 2 million).

Saint-Martin-de-Bossenay (11 million barrels of oil) was discovered in 1959 and took off again in 2007 with horizontal wells and production of 1,000 barrels of oil per day.

Rhätian siliciclastics hosted the Grandville field (5 million barrels of oil), discovered in 1958. Neocomian siliciclastics produced a surprise of reservoirs that were absent in outcrop. Château-Renard (1958) found wet Dogger carbonates but discovered unexpected shallow, oil-bearing Neocomian formations in a pinchout play (7 million barrels of oil). This pragmatic approach became successful with modest discoveries in three plays. Dogger carbonates yielded field discoveries at Coulommiers, 1958 (16 million barrels of oil), Chailly-en-Bière, 1958 (10 million); Villemer, 1959 (5 million), Brie-Chartrettes, 1959 (4 million) in the vicinity of Chalais and other fields (less than 2 million).

Saint-Martin-de-Bossenay (11 million barrels of oil) was discovered in 1959 and took off again in 2007 with horizontal wells and production of 1,000 barrels of oil per day.

Rhätian siliciclastics hosted the Grandville field (5 million barrels of oil), discovered in 1958. Neocomian siliciclastics produced a surprise of reservoirs that were absent in outcrop. Château-Renard (1958) found wet Dogger carbonates but discovered unexpected shallow, oil-bearing Neocomian reservoirs in a pinchout play (7 million barrels of oil, 30 million including satellite fields).

A widely spaced seismic grid was completed in 1958 in the basin. However, the presence of seismic multiples, mandatory surface corrections and lateral velocity variations remained huge technical challenges. Defining prospects with subtle vertical closures of a few tens of meters (at best) was a recurrent problem.

A Depth Record and a Second Wave

A two-decade period followed with no great success. Several drilling campaigns were completed, all leading to negative results except for one well whose deepening led to a small gas flow in Triassic sandstones (Trois-Fontaines).

Château-Renard field was put on stream then with look-alike satellites but efforts to find Neocomian pinchout reservoir analogs were all negative. Château-Renard remained unique.

In the Lorraine Blocks in the eastern part of the basin, SNPDA reinterpreted its acreage and drilled dry holes, among them Gironville-101 that was completed in the Carboniferous at 18,645 feet. That well has held the Paris Basin depth record since 1964.

In the early 1970s more fresh licenses were granted to newcomers, among them Esso REP which was trying to diversify exploration from its rewarding Aquitaine position. Potential targets were identified, particularly at Triassic levels.

The seismic problems, however, were still evident, and many failures were due to adverse surface conditions and very poor static corrections. For example, Esso REP drilled 20 dry wells on their Brie permit. A database covering static corrections was implemented by CGG to help solve those problems step-by-step.

Eurafrep applied for an area Elf-Esso had relinquished and discovered the Trois-Fontaines commercial gas field in 1982 in the Lower Triassic sandstones, 20 years after the Trois-Fontaines 101’s small gas flow. Triton applied in the late 1970s for a license covering the Montmirail wells that had been drilled in the 1950s with oil shows. Herbert Brewer, Triton’s senior vice president for Europe (and a former Esso REP chief geophysicist) used the recipe: go updip for a seal.

After several attempts at producing existing wells, Triton chose an updip location jointly with Total-CFP. The sequence of events from 1981 to 1986 leading to the discovery and appraisal-exploitation of the Villeperdue field illustrates the remarkable case of an unexpected Dogger stratigraphic trap containing 53 million barrels of 2P reserves. (See Chapter 15 of AAPG Memoir 54.)

A Vibroseis program concluded in mapping a transverse-faulted four-way closure of 4 square miles in area. VPV-1 was drilled in 1982 and completed in a Dogger reservoir for 430 barrels of oil per day. The appraisal drilling program showed by the end of 1983 that any significant four-way dip structure seemed to disappear. This left the Basin’s ‘Giant’

During the late 1970s, several companies increased investment in the Paris Basin, taking advantage of methodological improvements in seismic acquisition and processing, petroleum systems with Rock Eval to identify source intervals (pioneered by J. Espitalié), and modelling software developed by IFP. In 1981 Esso REP found Donnemarie, a modest oil field in the Brie area in 1954, recognizing the 1000-foot downdip location of the 1920s well, and Pays-de-Bray-T1 found oil in a lenticular Jurassic reservoir. It produced only for a couple of months.

Late '50s: First Wave of Discoveries

Fresh licenses were granted to newcomers, including Petrorep, southeast of Paris, and CFP and FROPEX-DEP in the southern part of the basin. SNPDA decided to concentrate its efforts on the Triassic series. They found oil shows in Muschelkalk carbonate formations (Forcelles-1) and finally decided to partly relinquish their Lorraine permits in the eastern part of the basin.

This was a time for disappointments, but there was still a hint of optimism. Poor exploration results led the companies to calibrate near-surface seismic-velocity variations by using up-hole travel times from nearby shallow core holes. This enabled them to map structure more accurately by removing the effects of shallow low-velocity horizons.

This pragmatic approach became successful with modest discoveries in three plays. Dogger carbonates yielded field discoveries at Coulommiers, 1958 (16 million barrels of oil), Chailly-en-Bière, 1958 (10 million); Villemer, 1959 (5 million), Brie-Chartrettes, 1959 (4 million) in the vicinity of Chalais and other fields (less than 2 million).

Saint-Martin-de-Bossenay (11 million barrels of oil) was discovered in 1959 and took off again in 2007 with horizontal wells and production of 1,000 barrels of oil per day.

Rhätian siliciclastics hosted the Grandville field (5 million barrels of oil), discovered in 1958. Neocomian siliciclastics produced a surprise of reservoirs that were absent in outcrop. Château-Renard (1958) found wet Dogger carbonates but discovered unexpected shallow, oil-bearing Neocomian reservoirs in a pinchout play (7 million barrels of oil, 30 million including satellite fields).

A widely spaced seismic grid was completed in 1958 in the basin. However, the presence of seismic multiples, mandatory surface corrections and lateral velocity variations remained huge technical challenges. Defining prospects with subtle vertical closures of a few tens of meters (at best) was a recurrent problem.

A Depth Record and a Second Wave

A two-decade period followed with no great success. Several drilling campaigns were completed, all leading to negative results except for one well whose deepening led to a small gas flow in Triassic sandstones (Trois-Fontaines).

Château-Renard field was put on stream then with look-alike satellites but efforts to find Neocomian pinchout reservoir analogs were all negative. Château-Renard remained unique.

In the Lorraine Blocks in the eastern part of the basin, SNPDA reinterpreted its acreage and drilled dry holes, among them Gironville-101 that was completed in the Carboniferous at 18,645 feet. That well has held the Paris Basin depth record since 1964.

In the early 1970s more fresh licenses were granted to newcomers, among them Esso REP which was trying to diversify exploration from its rewarding Aquitaine position. Potential targets were identified, particularly at Triassic levels.

The seismic problems, however, were still evident, and many failures were due to adverse surface conditions and very poor static corrections. For example, Esso REP drilled 20 dry wells on their Brie permit. A database covering static corrections was implemented by CGG to help solve those problems step-by-step.

Eurafrep applied for an area Elf-Esso had relinquished and discovered the Trois-Fontaines commercial gas field in 1982 in the Lower Triassic sandstones, 20 years after the Trois-Fontaines 101’s small gas flow. Triton applied in the late 1970s for a license covering the Montmirail wells that had been drilled in the 1950s with oil shows. Herbert Brewer, Triton’s senior vice president for Europe (and a former Esso REP chief geophysicist) used the recipe: go updip for a seal.

After several attempts at producing existing wells, Triton chose an updip location jointly with Total-CFP. The sequence of events from 1981 to 1986 leading to the discovery and appraisal-exploitation of the Villeperdue field illustrates the remarkable case of an unexpected Dogger stratigraphic trap containing 53 million barrels of 2P reserves. (See Chapter 15 of AAPG Memoir 54.)

A Vibroseis program concluded in mapping a transverse-faulted four-way closure of 4 square miles in area. VPV-1 was drilled in 1982 and completed in a Dogger reservoir for 430 barrels of oil per day. The appraisal drilling program showed by the end of 1983 that any significant four-way dip structure seemed to disappear. This left the Basin’s ‘Giant’

During the late 1970s, several companies increased investment in the Paris Basin, taking advantage of methodological improvements in seismic acquisition and processing, petroleum systems with Rock Eval to identify source intervals (pioneered by J. Espitalié), and modelling software developed by IFP. In 1981 Esso REP found Donnemarie, a modest oil field in the Brie area in 1954, recognizing the 1000-foot downdip location of the 1920s well, and Pays-de-Bray-T1 found oil in a lenticular Jurassic reservoir. It produced only for a couple of months.
region, in fluvial to deltaic, near-lake Keuper sandstones, sealed by intraformational shales of the same age. This drew attention to these reservoirs that had produced oil since 1967 in Chailly.

In 1983, Esso REP discovered Chaunoy Field on a northeast-southwest elongated anticline that is 9-miles long by 3-miles wide, with oil pay at the crest of the fault-related structure. This fault is difficult to identify on seismic, which might partly explain why the prospect was missed by the previous seismic grid that was spaced too widely. The anticline could be mapped accurately thanks to advanced new statics processing provided by Exxon’s worldwide experts.

Chaunoy is the basin’s largest field at 90 million barrels of 2P reserves. The size of the structure compensates largely for the 200-foot oil column. A great lesson from this discovery is that, once again in the profession, the alliance of technology, moving forward all the time, together with perseverance despite numerous discouraging failures, may well pay off in the end.

Serge Matesco, who oversaw Total’s petroleum rights in France, said that a euphoric frenzy took hold of the industry in the early 1980s. It was triggered by the large discoveries and the hope for a fruitful marriage of advanced technology and new ideas. This led companies to quickly acquire dozens of permits. Fifty companies were present in 1987, including CFP Total which had an interest in 40 permits. The work commitments reached unacceptable levels and a lot of seismic and several wells followed with poor rewards. The craze for French petroleum acreage disappeared, paving the way for newcomers, mostly independents from the UK, who carried out parts of the ongoing programs.

As the excitement decreased, some companies persisted with modest but rewarding drilling success. Elf Aquitaine discovered Itteville Field, the last significant new field, in 1990. Its 2P reserves of 25 million barrels are reservoired in a Dogger stratigraphic trap, like Villeperdue. The main 2000s event was the significant increase of Champotran production and reserves (25 million barrels?) with contributions from southern extensions and a nearby eastern structure.

Seismic on the Champs-Élysées and Wells in Paris and Versailles

During the late 1980s, Elf Aquitaine, Total and BP jointly applied for the large “Île de France” permit covering the city of Paris and its suburbs, the only unexplored area. CGG completed a spectacular Vibroseis acquisition

Continued on next page ★
program in downtown Paris in 1986. Ivry-10D was drilled deviated to reach a prospect right below urban buildings and produced Parisian oil for four years. Finally, in 1994 a delineation well was drilled at Itteville in the vicinity of the Versailles-Chevreul arboresum using light equipment to reduce surface impact. It was dry.

The majors began to withdraw. ExeonMobil and Total-Elf Aquitaine sold their permits/concessions to Coparex (then Lundin, later International Petroleum), Geopetrol and Vermilion. These remaining operators as well as SPPE and Petroper recorded successful exploration results nearby including Champotran-La Torche (Vermilion), La Motte-Noire Rhaetian and Merisiers Dogger (Coparex).

In the late 2000s Toreador and others began exploration for Liassic source-rock hydrocarbons with little success. The potential for unconventional hydrocarbons has been defined in the Liassic kitchen (Brie-Champagne) by geochemical data and the thermal history, but no resource estimate should be relied upon until pilot tests are carried out, which is so far unattainable due to the French ban on hydraulic fracturing operations. Permain oil shales that were mined in the past in the small Autun half-graben in east-central France may also become unconventional oil and gas targets if there prove to be similar pre-Mesozoic grabens below the Paris Basin. However, France’s political attitude towards shale oil and gas seems to be: “Non!”

A Last Wink at the Petroleum System(s)

The Paris Basin's 345-million-barrel 2P reserves are reservoired in 65 fields, of which 22 have reserves greater than 2 million barrels of oil. Only eight are greater than 10 million, and two are larger than 90 million. The top five are Chaunoy (90 million), Villetapete (53 million), Château-Renard and satellites (30 million), Itteville (26 million), Champotran (25 million). The unique Trois Fontaines gas field has reserves of about 35 billion cubic feet. The Paris Basin's end-2022 total cumulative production is about 330 million barrels of oil. Current oil production is about 7,800 barrels of oil per day and declining. A considerable proportion of the traps (30 percent of the total reserves) have stratigraphic and hydrodynamic components (Villetapete, Itteville, Château-Renard and satellites).

The three main reservoir-seal pairs (plays) include the Dogger/Oxfordian play, Callovian-Bathonian oolitic and bioclastic limestones with a complex facies distribution and diagenetic effects (cementation and fracturing). The main producing area at the top of the Callovian Dalle Nacrée formation is sealed by Callovian-Oxfordian marls.

The Rhaetian/Upper Rhaetian and Basse Lias consists of regionally extensive fluvio-deltaic sandstones with fair to poor petrophysical characteristics. Lias and Rhaetian shales are the corresponding seals. The Intra Keuper Formations/intermediate seals play includes heterogeneous and discontinuous fluvial sandstones with good reservoir characteristics diagenetically modified by dolomitic cements. The Donnemarie, Chaunoy, Vert-Le-Grand, Chalan and Boissy formations are sealed by intraformational shales.

The main proven source rock corresponds to the clay-marly levels of the Lias subdivided into three organo levels: Toarcian, Pliensbachian-Liitharingian and Senonian-Hettangian. Located between the Dogger and Keuper petroleum reservoirs, this is a very efficient hydrocarbon sand.

The source rock-kitchen extends into the depocenter of the Brie area. Carboniferous layers are marginal sources in the Trois-Fontaines Muschelkalk gas field (where Storergy is the current operator) and the Forcelles Lettenkohle oil field (Replor, current operator).

The impact of the work done on the Toarcian, the historical reference for type-2 source rocks, has gone far beyond its geographical limits (although such detail is not well known even within our profession). It was studied intensely by Bernard Tissot, a mining engineer and long-time researcher at the IFP, a member of the French Academy of Sciences and an internationally recognized expert-geochimist. This source rock served as the model for his pioneering work on the genesis of hydrocarbons through thermal degradation of organic matter, the characterization of kerogen and the kinetics of generation and migration. Last but not least, it played a key role in the development of Rock Eval, the well-known tool used worldwide by generations of petroleum geochemists.

Exploration Philosophy and Key Messages

Although a modest petroleum basin by world standards, the Paris Basin offers contrasting periods of discoveries and failures. It provides a rich spectrum of messages for explorers that reaches well beyond the expected regional interest. Major companies made most of the discoveries, but smaller independents like Petrorep and Vermilion, a Canadian company, are still active today.

Numerous dry wells drained throughout the exploration programs bear witness to the necessity of persistent effort by the petroleum industry. This was encouraged, of course, by the need to relieve, even modestly, the level of French dependence on foreign sources of oil.

This reliance on domestic drilling success led the French industry to go through two main cycles of discoveries separated by a 20-year period of discouraging drilling endeavors. Only during the second cycle in the 1980s were two “Parisian giants” found. Their true size, at least for one of them, became apparent through an appraisal program and (to be frank) thanks significantly to serendipity.

Most of the structures have low relief. Combined with the complex problems of seismic statics due to the irregular thickness of a shallow chalk formation, this has impaired exploration. However, a message here is that such uncertainty leaves room for optimism when looking at this kind of play, thinking of the glass as half full rather than half empty. Technology played its role and seismic has improved through time, for instance by using more powerful sources, more traces and a huge statics correction database. Evaluating this type of play in various mature areas of the world might provide strategic avenues at a time when the lack of prospective targets is becoming increasingly obvious.

(Historical Highlights is an EXPLORER series that focuses on the history of petroleum exploration and production. Topics broadly related to our work in the geosciences, the critical advances of science and technology, the key discoveries and the complex problems among our colleagues are all welcome. Narratives that illuminate the E&P process or its context in geopolitics and energy economics are encouraged. If you have such a story or know someone who does, please contact Matt Silverman, the series editor, at silverman_matthew@yahoo.com.)
The officer candidate slate for the 2023-25 AAPG Executive Committee, which has expanded to include a petition candidate, is now final and will be open to member voting in late March.

Petition candidates, as defined by AAPG bylaws, were accepted through the end of January. The petition candidate will join the six candidates previously brought forth by the Executive Committee.

Candidates for AAPG office have been given the opportunity to respond briefly to the subject: “Why I Accepted the Invitation to be a Candidate for an AAPG Office.” Their responses and biographical information have been edited only for grammar and formatting. This information will be available online and included in the March Explorer through the election period. Online balloting will begin March 28 and end on May 15 at midnight CDT.

As in past years, voting will be handled and maintained by Survey & Ballot Systems. All voting will be online, although paper ballots will be mailed to members without an email address, or by special request. Candidates were asked to limit their biographies to 350 words and responses to 500 words.

JEFFREY B. ALDRICH
Principal Geoscientist
Sproule Denver

2011-14 – DEG Advisory Board (Asia Pacific Region)
2010-11 – Delegate, AAPG-Pr bars Committee
2008-11 – DEG Executive Committee (President, 2011-12)
1997-2000 – AAPG-Pr bars Committee, Dallas

AAPG Activities
Joined AAPG 1979
Member EMD 1981
2024 – Technical Co-Chair, IMAGE Conference
2011– Co-Convener, 33rd GCSSEPM Research Conference
2010-20 – Senior Vice President/Chief Leader/Technical Evaluation, Strategy, Portfolio Experience
University of Colorado, Boulder
Bachelor of Applied Science – Geology, 1979–81
MSc – Geology, University of Colorado, Boulder, Colo.
Ph.D – Geology and Geophysical Engineering/Reservoir Engineering, Colorado School of Mines, Golden, Colo.
MSc – Geology, University of Colorado, Boulder, Colo.
Bachelor of Applied Science – Geology, University of Colorado, Boulder, Colo.

AHP Honors and Awards
2015 – Distinguished Service Award
2011 – AAPG Certificate of Merit
2008 – DEG Certificate of Merit
2005 – Distinguished Service Award
2002 – Distinguished Service Award
2000 – AAPG Certificate of Merit
1998 – Distinguished Service Award
1995 – AAPG Certificate of Merit
1991 – AAPG Certificate of Merit

Selected Publications and Presentations
A selected list of peer-reviewed titles.
2009 – “Seismic Interpretation Distribution and Numerical Modeling of Natural Gas Leakage on Block 2 of the Orange Basin offshore South Africa,” 11th SAGA Biennia Technical Meeting
1979 – “Hydrothermal Alteration of Remnant Arc Basalts: DSDP Site 448, Leg 59,” Initial Reports of the PDP-DSDP Leg 59, vol. 59 (co-author)

Why I Accepted the Invitation to be a Candidate for AAPG Office
By JEFFREY B. ALDRICH
Being connected is a necessary human condition; being connected and being challenged is necessary for growth. Being connected, challenged and held accountable while at the same time finding ways to create leadership and contribute to the organization that has supported my professional development. My “bottom-up” growth in the industry and value that AAPG has brought to my academic, professional and personal life is what motivates me to serve the membership as we chart a way forward in the coming decades.

BRIAN W. HORN
Managing Director
The Hatteras Energy Group Houston

2020– John W. Shelton Search and Discovery Article of the Year Award
2018 – Jules Braunstein Memorial Award (ACE, Salt Lake City)
2008 – George C. Matson Memorial Award

Selected Publications and Presentations
2018 – “Two Decades and Five Paradigm Shifts Gleaned from AAPG’s Giant Fields Database,” AAPG Memoir 125, Giant Fields of the Decade: 2010-2020 (co-author)
2015 – “Advances and Perspectives on Stratigraphic Trap Exploration – Making the Subtle Trap Obvious,” Interpretation (co-author)
2013 – “Chronostratigraphy Across a Conjugate Margin Source-Sink: Uruguay and Namibia – Why Stop at Basement?” ACE Salt Lake City
2015 – “Access and Exploration Opportunities – A View of the Potential in Frontier and Mature Basins,” First Break (January)
2014 – “Rapid Outer Marginal Collapse of the Rift to Drift of Passive Margin Evolution, With a Gulf of Mexico Case Study,” Basin Research

Why I Accepted the Invitation to be a Candidate for AAPG Office
By BRIAN W. HORN
As a second year college student playing soccer, I took my first course in geology. That summer I had the great fortune to work as a geotech, where my friend (from the soccer team) worked as a geologist and helped me get the job. I began working in the Williston Basin and I learned how to interpret seismic, “skip” well logs and contour a map. My mentor told me, “Brian, you can’t just be a geologist in this business, you need to be an explorationist.” You must develop your skills in geology, geophysics, petrophysics, reservoir engineering and commercial negotiation.”

This course provided the basis for how I have pursued my education, professional career and my career path in the energy industry.

I joined AAPG as a Junior member when I was at university. I was excited to be part of a great organization that provided opportunities to learn, network and engage with the people whose names I saw in print from articles I had read. I often tell people, if someone would have given me a piece of paper and asked me to write out my career path, the people I have met, places I have been and friendships I have made, I never in a million years would have had the creativity to write the career path that I have experienced. I am fortunate to say that my professional career has and continues to bless my life.

Given this context and all my great experiences as an AAPG member, I wanted to volunteer for a role in leadership and contribute to the organization that has supported my professional development. My “bottom-up” growth in the industry and value that AAPG has brought to my academic, professional and personal life is what motivates me to serve the membership as we chart a way forward in the coming decades.

EMISSIONS AND PASSION FOR THE FUTURE OF OUR ORGANIZATION run high, and many members are concerned about where AAPG will be in the future and what role it will play representing the energy industry in society. I believe leadership must make sound choices for our organization and seek to be inclusive and collaborative with all earth science disciplines and people. Geoscientists must be a leading voice in the discussions on energy generate new ideas, and provide technically sound and science-based rationale for the future of AAPG and its role in the energy transition.

Listening and collaboration are critical aspects of leadership. It will be my goal to engage as many people and communities as possible to make our organization vibrant, sustainable, diverse and focused on future success.

We must continue to train and mentor new entrants into the industry and share the wisdom and knowledge of our outstanding AAPG members. Growth and innovation will be found in developing new concepts providing the message and platform to deliver our ideas and insight globally.
I am deeply honored and thankful for being nominated as a candidate for vice president - Sections. AAPG has helped me grow tremendously throughout my academic and professional career and given me the pleasure of meeting and learning from many scientists from around the world.

I chose to stand for office as I want not only to give back to our geoscience community, but to continue creating a shared voice among our United Sections, one that is diverse, resonates with inclusivity, champions sustainability, and pushes the technical frontiers of our discipline.

To accomplish this, I plan to reinforce relationships between academia and industry, create more leadership opportunities for students and young professionals (YPs), and host more technical, networking, and mentorship opportunities.

The energy landscape is rapidly evolving, with the new generation of incoming geoscientists playing a critical role within it. This will require different perspectives and subsurface characterization skills from many disciplines and backgrounds. As the chairman for the AAPG Global Young Professionals (YP), I have been collaborating with the Regions and Sections to re-establish YP initiatives. By connecting local leadership with engaged geoscientists, we are working to bolster YP engagement while delivering robust geotechnical and networking opportunities for our members.

We also collaborated with the AAPG Latin American and Caribbean Region to bring back the International Student and YP Leadership Summit this year. It offered a unique platform for 13 different countries to gather and learn about leadership, share lessons learned, and strengthen their geoscience network on a global level. I intend to leverage these experiences to unite the various local associations and create a network that will help us become further engaged with our members as a shared voice.

I am confident that we can help mitigate these issues by building upon the Association’s bright future. I invite you to join me in taking AAPG to the next chapter, and to a sustainable future.

Why I Accepted the Invitation to be a Candidate for AAPG Office

By JULIAN CHENIN

I joined AAPG in 1996 as an undergraduate student in Caracas, Venezuela. Since then, AAPG has played an important role as part of my professional development and networking activities.

I have served AAPG in different capacities – as general chair of the 2019 ACE meeting in San Antonio, as technical chair for sessions and themes on a multitude of conferences, as a member of various committees, and as reviewer for the AAPG BULLETIN. Over the years, AAPG engagement has allowed me to meet colleagues that have become good friends. I believe that AAPG has played, and will continue to play, and important role as an organization that enables growth of the geoscience profession.

I bring more than 20 years of experience, both in academia and industry, that I offer to put to the service of AAPG as vice president - Sections.

I am currently the Regional Director for South America of the Energy, Society and Environment (ESE) Committee. My role is to support the local Sections, provide technical services, and promote the geoscientific community by offering a platform to the next generation.

I believe that we can help mitigate these issues by increasing the visibility of Section activities, by diversifying the content of our technical journals, by increasing the visibility of Section activities, and by implementing their innovative, sustainable projects across the globe.

I look forward to working with you this coming year and to bring back the International Student and YP Leadership Summit this year.

I am deeply honored and thankful for being nominated as a candidate for vice president - Sections. AAPG has helped me grow tremendously throughout my academic and professional career while giving me the pleasure of meeting and learning from many scientists from around the world.
Selected Publications

See FAIRHURST page 4

By JUAN PABLO LOVECCHIO

I accepted the invitation to be a candidate for AAPG treasurer because I look forward to the opportunity to give back to AAPG and to be part of shaping a modern, more diverse and global professional organization that will continue to impact lives in the years to come. In my 15 years in AAPG, I have participated in AAPG activities at almost all levels. I joined in 2008 as a student member in Córdoba, Argentina, when I was working on my Sc. degree. Then I served as student chapter president at IFP-School (in 2010-11) during my M.Sc. studies in France. In 2012, I graduated and received a job with YPF, the national Argentinean oil company. In 2013 I reactivated the Argentina Chapter, where I served as president until we could guarantee continuity, it has been involved with AAPG activities in the country since then.

I provided support for several Geoscience Technology Workshops (GTW) in Argentina as well as to several ICE events in the Latin American and Caribbean

See LOVECCHIO page 4
ALDRICH from page 3
Lifelong friendships is something truly unique and thus, worth finding time to share. I have found that the AAPG has, as a professional association, connected me to more outstandingly knowledgeable people than I could have ever found on my own – and once these connections were made, these same individuals could, if hired by large companies in my research, challenge my assumptions and, in the process, make me a much better geoscientist. When I have allowed myself to be challenged by some of the brightest minds in the world, I have found I have opened myself up to wonderful friendships and became better at my job.

Yet every one of us has seen the data and knows the trends of both decreasing membership and sponsorships in AAPG. There is not one single reason driving these trends, but the AAPGs that I joined when I was in college and the industry that hired me when I left university is not the same as it was; nor should it be. The world has changed and the industry has changed, thus, for any organization to stay relevant, there are parts of it that must change as well. The key is knowing what are those things that must change and what are the parts that are foundational.

AAPG will continue to be relevant if it stays true to the purposes as spelled out in its Constitution:

“The purposes of this Association are to advance the science of geology, especially as it relates to petroleum, natural gas, other subsurface fluids, and minerals; to promote the advancement of knowledge; to promote the technology of exploring for, finding and producing these materials in an environmentally and economically sound manner; to foster the spirit of scientific research throughout its membership; to disseminate information relating to the geology and the associated technology of petroleum, natural gas, other subsurface fluids, and mineral resources; to improve the understanding of all aspects of petroleum geology; to maintain a high standard of professional conduct on the part of its members; to provide the public with means to recognize adequately trained and professionally responsible geologists; and to advance the professional well-being of its members.”

Over my career I have had to adapt to change, from salt domes to shale gas and now to helium, hydrogen and carbon capture and storage. I have learned the value of special associations; unique knowledge and skill; and the ability to collaborate with the AAPG’s Network Technical programming co-chair (2020-24), I coordinate volunteers to deliver technical content, focusing on meaningful engagement of our global membership. AAPG has so much to offer geoscientists, and I am delighted to be part of an organization that is uniquely trained and skilled for the characterization of pores in sedimentary strata and how fluids or brines interact with them. They're the only way to produce hydrocarbons, helium, carbon dioxide, water, lithium brines and any number of other fluids. We, the AAPGs, need to promote this message across the academic community as we combine the science, the technology and the economics. We, the AAPG, need to promote the message to businesses that it is in their best interest to have certified, well-trained geoscientists with deep technical and deep professional conduct with deep connections to help unravel the next level complex problems that will arise. We need to build our Association during which hydrocarbons will still play a major role and our skills will still be needed – but so will our skills be needed in so many other areas.

And it is not just our individual skills but also our collective abilities, for we accomplish much more together than we could by ourselves, whether it is critical for the well-being of society. Therefore, it is incumbent on us to do this in the most professional manner.

To me that means finding ways to return our Association to a sound financial status in order that it can better support our membership in both its scientific and professional endeavors.

Why I Accepted the Invitation
To be a Candidate for AAPG Office
by REBECCA L. CALDWELL

I accepted the invitation to be a candidate for AAPG treasurer for two reasons: first, I care deeply for the membership and greater geoscience community, and second, I recognize the power of AAPG to positively influence society and advance the energy industry. It is this passion that drives me to contribute my time, efforts, and skills to the AAPG Executive Committee. I choose a career in the energy industry because it represents a direct role that the geosciences play in sustaining society and the earth, and I am driven to help our community accomplish our goals to the best of our abilities. AAPG makes this possible by – supporting, educating, connecting and growing our diverse membership. I have benefited directly from these aspects of AAPG, making connections across the industry that have furthered my career and worked to set the organization on a path for future financial success. I have also developed a deep understanding of AAPG, our membership, and our fit within today’s organization.

As a member of the IMPACT Steering Committee (2022, 2023) and Technical Program Committee (2023), I put great effort into learning the needs of our diverse membership and guiding teams (2022 and 2023 DEI committees, 2021 Siliciclastics Theme) to deliver high quality, impactful programming. In my role as the AAPG Women’s Network technical programming co-chair (2020-24), I coordinate volunteers to deliver technical content focusing on meaningful engagement of our global membership. AAPG has so much to offer geoscientists, and I am delighted to be part of an organization that is uniquely trained and skilled for the characterization of pores in sedimentary strata and how fluids or brines interact with them. They're the only way to produce hydrocarbons, helium, carbon dioxide, water, lithium brines and any number of other fluids. We, the AAPGs, need to promote this message across the academic community as we combine the science, the technology and the economics. We, the AAPG, need to promote the message to businesses that it is in their best interest to have certified, well-trained geoscientists with deep technical and professional conduct with deep connections to help unravel the next level complex problems that will arise. We need to build our Association during which hydrocarbons will still play a major role and our skills will still be needed – but so will our skills be needed in so many other areas.

And it is not just our individual skills but also our collective abilities, for we accomplish much more together than we could by ourselves, whether it is critical for the well-being of society. Therefore, it is incumbent on us to do this in the most professional manner.

To me that means finding ways to return our Association to a sound financial status in order that it can better support our membership in both its scientific and professional endeavors.

CALDWELL from page 3

FAIRHURST from page 3

Why I Accepted the Invitation
To be a Candidate for AAPG Office
By WILLIAM “BILL” FAIRHURST

I am honored and appreciate the support of AAPG members and many current and past leaders of AAPG in running for the office of AAPG treasurer. I have strong record of leadership, experience in a range of other technical roles and commitment to employers and industry organizations, I focused my time and effort on some of these roles. Over the last 20 years I have also focused on geologic and petroleum industry knowledge transfer. These contributions include my 21-year teaching experience, 11 university courses, 18 professional courses, five peer-reviewed publications, three magazine articles, 12 published interactive face-to-face presentations, 44 recorded audio and video presentations, and 91 invited presentations, many of these for AAPG programs. Several of these presentations include high research interest scores, including a Super Basin in the top 5 percent of all research since its publication. Having completed these, I am now available, committed and focused on service for AAPG as treasurer.

Over the past decade, AAPG has faced many challenges. It has addressed some of these challenges but has left many unanswered. The office of AAPG treasurer provides multiple opportunities for awareness, information and assisting the Executive Committee in planning solutions for these challenges that need to be addressed during 2024-26. The office of treasurer is unique among the Executive Committee positions. The oversight for AAPG and headquarters as treasurer requires specific technical training and expertise that most petroleum geologists have not yet obtained.

I started my first business before college and was double-rolled journal and accounting ledger balances within a year. Academically, I have over 20 years of teaching courses, over 100 hours of finance, economics and other general management courses, and industry training programs in these specific business skills. Over the past 20 years, I have done all the accounting and finance for several oil and gas companies and an aviation organization. As president of one firm, I taught an entire accounting department new to the industry, including the CFO, on the principles and practice of accounting and finance.

My commitment to training and learning in geosciences and the business of oil and gas is empathetic by my current pursuit of a PhD in business administration, which is its final stages. These academic and practical experiences, as well as 25 years in senior executive positions in oil and gas upstream organizations, provide the technical ability to understand and clarify AAPG accounting, finance and budgeting issues, cooperate work as a member of the Executive Committee to solve unaddressed problems, and set the organization on a path for future financial success and stability.

LLOVECCHIO from page 3
Region (LACR), notably the 2019 ICE event that that took place in Buenos Aires, Brazil. I was also deeply involved in 2020 in the organization of a series of virtual technical conferences that we created in the LACR to continue supporting our members in the Region throughout the COVID pandemic. I not only enjoy collaborating with the organization of events in the Region, but also have presented my research in several of these events. I strongly believe that professional associations such as AAPG need to be led by volunteers who are not only enthusiastic but can also demonstrate technical excellence and professional knowledge.

I have gone through a path within AAPG that allowed me to better understand how the Association operates both regionally and globally. I have been appointed Region delegate at the HoA and secretary of the LACR and, as mentioned above, one of the most important milestones of service to AAPG was the successful organization of ICE Buenos Aires 2019, an event that attracted more than 1,500 geoscientists from around the world.

I recognize the value of future generations. I enjoy working with YPs and students; I have served as student advisory mentor for several IBA teams throughout the years, and more lately as an IBA judge; and I collaborate with the AAPG’s Visiting Geoscientist Program (VGP), teaching lectures not only in person but also virtually for student chapters across the Region, as a way of strengthening AAPG’s investment in the future generation.

Furthermore, I have served in the local association AAGGP (Argentine Association of Petroleum Geologists and Geophysicists), first as secretary (2018-20) and then as president for two periods (2020-22 and 2022-24). I have gained experience and insight on current and future global associations are a key for success in these challenging times, especially to grow AAPG’s presence in the international Regions.

I believe that my experience, together with my technical expertise and my professional network, have prepared me to serve AAPG now at a global scale.
AAPG Foundation, Boy Scouts Connect Young People to Geology

The AAPG Foundation continued its longstanding connection to geological outreach when it once again sponsored the Geology Merit Badge program at the latest Scout Jamboree last summer, a 12-day adventure typically held once every four years. This event attracted nearly 15,000 Scouts, Venturers and Explorers to the Summit Bechtel Reserve Scout Camp near Beckley, W.Va.

The Jamboree is sponsored by the Boy Scouts of America. The 2023 event, held in July, was the first in the post-pandemic era. The event, limited in size due to BSA budgetary concerns, drew more than 12,000 Scouts — including more than 1,500 girls, who can now participate in Scouting units.

Of note, this event marked the first time girls participated in the Jamboree’s offer of working toward a Geology Merit Badge.

The AAPG Foundation’s role includes financial support for the expenses in providing materials and in forming a “team” of AAPG volunteers who help Scouts work toward earning the Badge. The 2023 initiative included four AAPG members who volunteered their expertise and sharing spirit to help the Scouts — Ron Hart of Tulsa, Gary Robinson of Aurora, Colo., Bill Haworth of Bush, La. and AAPG Distinguished Award-recipient Bob Webster of Irving, Texas, who also is an AAPG Foundation Trustee Associate.

Other participants included a “home team” — those who helped prepare for the event but didn’t attend — including AAPG members Rick Erickson of Tulsa) and Bill Underwood of Oklahoma City.

The AAPG members teamed with six geologists from the West Virginia Survey — including AAPG member James Britton and Randy Toth, who attended the 2013 as a Scout and earned the Geology Merit Badge — and together they taught geology to the Scout-aged youth and helped introduce them to the local geological setting and area’s mineral resources.

“Our assignment was traditional — our team organized a classroom and science museum experience, designed to teach youths about geology,” Hart said.

The geology classroom was a well-placed tent located among a cluster of other merit badge tents.

“We hosted twice-daily classes, a rock and mineral collection for visitors to inspect and touch, and a continuous stream table to demonstrate erosion, deposition and stream processes,” Hart added.

Team members also were able to answer questions that were specific to the locale, including many about coal mining, hydraulic fracturing and local geology.

“Scouting certainly gives us exposure to many outstanding young citizen-scientists in the 14-18 age range,” Hart said, “just as it exposed geologists to young citizens.”

Continued on next page

Trustee Associates 2024 Annual Meeting
Asheville, NC

Online Registration is Now Open!

Make plans to attend this year’s Trustee Associates annual meeting at the beautiful and magnificent Biltmore Estate in Asheville, N.C., May 19-22.

The historic French Renaissance-styled castle is situated amid 8,000 acres in the scenic Blue Ridge Mountains and promises to be a spectacular setting for reconnecting with old friends and meeting new friends.

Terrific tours and a spectacular field trip guarantee something for everyone:

► Chihuly at Biltmore art exhibition, featuring the works of famed American glass artist and sculptor, Dale Chihuly.
► Private tours to areas of the Biltmore, which are closed to the public.
► Private excursions to the Biltmore’s world-famous gardens and acclaimed Biltmore Winery.
► Field trip through the scenic Blue Ridge Mountains to Kings Mountain.
Online Registration is Now Open!

Terrific tours and a spectacular field trip guarantee something for everyone: a private tour of the historic French Renaissance-styled castle Biltmore Estate in Asheville, N.C., and promises to be a spectacular setting for reconnecting with old friends and meeting new friends.

- Field trip through the scenic Blue Ridge Mountains to Kings Mountain.
- Private excursions to the Biltmore's world-famous gardens and acclaimed Biltmore Winery.
- Private tours to areas of the Biltmore, which are closed to the public.
- Chihuly at Biltmore art exhibition, featuring the works of famed American glass artist and sculptor, Dale Chihuly.

Trustee Associates 2024 Annual Meeting
May 19-22
Asheville, NC

Scan to Register:

Connect with geology – AAPG has been connecting geologists, thought leaders, and energy professionals and gathers a community of geoscientists and industry leaders that collaborate to guide and shape our future. Share your case studies, technological advancements, and research discoveries with the world’s leading assembly of applied geophysicists, thought leaders, and technical experts from around the world. Whether you are a veteran or novice speaker – we want to hear from you!

SEG, AAPG, and in conjunction with SEPM are set to host the annual International Meeting for Applied Geoscience and Energy (IMAGE), from 26-29 August 2024 in Houston, Texas at the George R. Brown Convention Center. IMAGE ’24 is the most influential platform for energy professionals and gathers a community of geoscientists and industry leaders that collaborate to guide and shape our future. Share your case studies, technological advancements, and research discoveries with the world’s leading assembly of applied geophysicists, thought leaders, and technical experts from around the world. Whether you are a veteran or novice speaker – we want to hear from you!

CALL FOR ABSTRACTS NOW OPEN

Submission Deadline: 15 March 2024

SHARE YOUR KNOWLEDGE WITH A GLOBAL AUDIENCE

26–29 August 2024 • Houston, Texas
George R. Brown Convention Center

IMAGEevent.org

Closing or Consolidating Your Office?
Make a Charitable Contribution of your materials

OIL & GAS INVESTMENT EVALUATIONS

SCOTT J. TAYLOR
GEOLOGIST

Scout Cards, Logs, Samples, Core, Geophysics

I’ll Appraise For Tax Purposes

Scott J. Taylor
806-358-2282
geologisttx@icloud.com
In Memory

Remembering Don O’Nesky

Donald A. O’Nesky, Jr., a former longtime deputy director of both AAPG and the AAPG Foundation and an award-winning member of the Trustee Associates, died Jan. 29 in Longwood, Fla. He was 88.

O’Nesky, though not a geologist, had an active and influential career for AAPG in leadership roles and as an active member of both the Foundation and the Foundation TAs.

A native of Haileyville, Okla., O’Nesky entered the U.S. Air Force after graduating from Oklahoma State University in 1957. His active duty included tours in Southeast Asia, Holland, Japan, Italy and Vietnam, and while serving he earned a master’s degree from Troy State University.

He retired from the Air Force in 1978 and was hired by AAPG as member services manager at the Association’s headquarters in Tulsa, overseeing operations during a time of rapid membership growth and technological changes.

He was named deputy executive director of both AAPG and the AAPG Foundation in 1985. In 1997 he was appointed executive director of the Foundation, serving in that capacity through 1999.

During his term as the Foundation’s executive director he oversaw the establishment of the Members of the Corporation, an important advisory group for the Foundation’s leadership. He himself was elected a Member of the Corporation in 2019-21, when he requested to step down from his position.

He became a Trustee Associate in 1998 and continued his influential role in Foundation leadership, serving as the TAs vice chair in 2008-09 and as chairman in 2011-12.

Because of his contributions to and service for the Foundation, in 2002 his friends and colleagues established in his honor the Donald A. and Mary O’Nesky Named Grant, part of the Foundation’s Grants-in-Aid Program that provides grants to graduate students. In doing so, his colleagues observed that though he had never taken a formal course in geology, Don had earned “a degree by association.”

In a role close to his heart, he helped lead development of AAPG’s Military Veterans Scholarship Program (now officially the Deana and Paul Strunk Military Veterans Scholarship Program), serving in 2012-16 as chair of the MVSP Committee, which oversees selection of the scholarship recipients on an annual basis. He continued to serve on the committee through 2019.

Other AAPG leadership roles of note included:

▶ Trustee Associates Nominating Committee (member).

▶ TA Site Selection Committee (member).

▶ AAPG Membership Career Services (vice chair).

▶ AAPG Public Outreach Committee (vice chair).

Edward B. “Ed” Picou Jr., an AAPG Honorary Member who was involved in AAPG support and activities throughout his entire career, died Jan. 30 at his home in New Orleans. He was 91.

Picou, who joined AAPG in 1955, was a longtime paleontologist for Shell Offshore, where he supervised the exploration paleontology staff for almost three decades. He retired from the company after 34 years as an exploration consultant, the company’s highest technical rank.

For AAPG, Picou was elected treasurer for 2000-02, and in 2002 he was awarded Honorary Membership. He also was a member of the Foundation Trustee Associates, and in 2007 he funded the Foundation’s Ed Picou Grant-in-Aid scholarship, designated specifically for geology students at his beloved alma mater, Louisiana State University.

Picou received an AAPG Distinguished Alumni Service Award in 1999. He also was a Distinguished Member of the House of Delegates, where he served for multiple terms, and a member of both the Division of Environmental Geosciences and the Energy Minerals Division.

Other accomplishments included honorary memberships in SEPM, the Gulf Coast Section-SEPM, GCAGS and the New Orleans Geological Society, where he was affectionately known as “Mr. NOGS.” An early advocate for digitizing technical publications, he was instrumental in having all of the NOGS publications digitized by AAPG Datapages in 2003, the first local society to do so.

A fellowship grant for Earth science graduate students was named in his honor by the Gulf Coast SEPM, and in December 2023 he was awarded an honorary doctor of science degree from LSU.

In 2016 he received the Foundation’s Chairman Award, presented in recognition of those who have made extraordinary contributions (monetary and/or service) to the Foundation.

He had retired to Florida with his wife, Mary, who survives, along with his son, Donald A. “Skip” O’Nesky Jr.

TA Site Selection Committee (member).

Foundation Fundraising Advisory Committee (member).

AAPG Membership Career Services (vice chair).

AAPG Public Outreach Committee (vice chair).

17-19 June 2024 • Houston, TX

REGISTRATION OPENING IN MARCH

URTeC.org

The Integrated Event for Unconventional Resource Teams

EXPLORER MARCH 2024
established two named grants with the Foundation’s Grants in-Aid program — the David W. Worthington Named Grant and the David W. Worthington Family Named Grant, both created and awarded annually to graduate students studying paleontology.

A native of Worcester, Mass., Worthington received a bachelor’s degree in geology from Marietta College in Marietta, Ohio, and a master’s degree in geophysics from Virginia Tech University. He joined AAPG in 1982. He began his professional career with a 13-year stint at Shell Oil, eventually becoming exploration manager of Shell’s Gulf of Mexico and Atlantic Division. He left Shell to form his own offshore exploration firm, which transitioned into TGS Geophysical Co.

That company later became TGS-Calibre and, through a merger, TGS-NOPEC, where Worthington served as chairman from 1999-2004, remaining on the board through June 2007.

In closing, I hope many of you will please let us know.

David Worthington

David W. Worthington, a Foundation Trustee Emeritus and recipient of the Foundation’s highest honor, died Feb. 1 at his home in Naples, Fla. He was 82.

Worthington, the former CEO of TGS-Calibre and chairman of TGS-NOPEC, was a significant contributor to the AAPG Foundation and an officer and leader of both the Foundation and Trustee Associates.

He received in 2015 the L. Austin Weeks Memorial Medal, given in recognition of extraordinary philanthropy and service in advancing the AAPG Foundation’s mission. It is the Foundation’s highest honor.

Worthington, who was a member of the Foundation’s Members of the Corporation since 2013, was a Foundation Trustee from 2015-18, during which time he was the Trustee secretary. He was named Trustee Emeritus in 2019.

A Foundation Trustee Associate since 2001, Worthington served as both vice chairman and secretary-treasurer for the group, as well as chair of the 2014 Trustee Associates Site Selection Committee. He and his wife, Beverly, also

from page 30

reasonable and accurate predictions of where and when such events are likely to occur. Such predictive models enable early warning systems to alert communities to impending hazards, providing critical time for evacuations and emergency response preparation and implementation.

By simulating different scenarios and assessing the potential impact of human interventions, AI can assist environmental geoscientists with helping policy makers and urban planners develop more resilient infrastructure and land-use policies.

Climate Change Monitoring and Adaptation

I think more people today realize that climate change poses one of the most pressing challenges of our time, as it impacts ecosystems, weather patterns, sea levels and biodiversity worldwide. Environmental geoscientists can rely on AI-driven climate models to simulate the complex interactions between the atmosphere, oceans, land and ice, and of human influences (i.e., pollution) upon them, thereby gaining insight into future climate trends and potential impacts on our planet. AI algorithms can be used to analyze historical climate data to identify trends, detect anomalies and forecast future climate scenarios with greater precision than traditional methods.

Gaining a better understanding of how climate change affects different regions and ecosystems enables environmental geoscientists to help policymakers develop targeted adaptation strategies to mitigate adverse effects and promote sustainability.

Sustainable Resource Management

Efficient management of our natural resources — including water, minerals and energy — is essential to ensure the long-term health and prosperity of human society and the environment. AI technology plays a crucial role in these days in optimizing resource extraction processes, minimizing waste and promoting sustainable practices across various industries. As an example, AI-powered algorithms can be used to analyze geological data to identify promising sites for renewable energy developments such as wind farms and solar installations. Optimizing the placement and operation of such renewable energy infrastructure assists environmental geoscientists in accelerating the transition to a low-carbon economy while minimizing environmental impacts.

A Paradigm Shift

The integration of AI into environmental geoscience offers a paradigm shift in our ability to understand, monitor and manage the Earth’s natural systems. Harnessing the power of AI-driven analytics, predictive modeling and data-driven decision-making offers opportunity for the environmental geoscientist to be better equipped to address the complex challenges we and our planet face. As scientists continue to innovate and refine AI technologies, I hope the potential for collaboration between human expertise and AI will equate to a brighter, more sustainable future for generations to come. If you’re presently utilizing AI in an environmental geoscience application, I’d appreciate learning how.

In closing, I hope many of you will be attending the Carbon Capture, Utilization and Storage 2024 conference in Houston on March 11-13, hosted by AAPG along with the Society of Petroleum Engineers and the Society of Exploration Geophysicists. I again thank our membership in the Division of Environmental Geosciences for permitting me to serve as your 2023-24 DEG president, and I acknowledge the service of my current fellow DEG officers: Mattias Imhof, president-elect; Sherrilyn Williams-Stroud, vice president; Danahir Pinto, secretary-treasurer and Autumn Haigasma, editor. Our DEG will soon need to identify candidates for the upcoming 2024-25 term, so if you’re a DEG member who has interest in serving as an officer of DEG, please let us know.

I can be reached at hvogler@kleinfelder.com.
Biden Administration
Hamstrings LNG Potential

In late January, the Biden administration shocked the energy sector with its announcement that it was temporarily pausing any pending approvals of liquified natural gas exports to countries that do not have a current free trade agreement with the United States.

The move is ostensibly to allow the U.S. Department of Energy to “update the underlying analyses for these authorizations,” as the current authorizations were last updated in 2018 and no longer adequately account for considerations like potential energy cost increases for American consumers and manufacturers… or the latest assessment of the impact of greenhouse gas emissions.

Three weeks later, Shell released its global LNG outlook forecasting a nearly 50 percent growth in demand by 2040. Their analysis suggests that while natural gas demand in some regions has peaked, that global demand will continue to grow, peaking in the 2040s.

“China is likely to dominate LNG demand growth this decade as its industry seeks to cut carbon emissions by switching from coal,” said Stijn Zwanenburg, executive vice president for Shell Energy. “With China’s coal-based steel sector accounting for more emissions than the total emissions of the U.K., Germany, and Turkey combined, gas has an essential role to play in tackling one of the world’s biggest sources of carbon emissions and local air pollution.”

The upsurge in LNG energy security continues to be important, according to Shell's analysis, with new regasification plants coming online and delivering additional supply, despite the fact that overall gas demand in Europe fell in 2023.

Shell’s outlook also points to the important role that natural gas plays in stabilizing electrical grids supplied with significant amounts of intermittent renewable energy.

Industry Reaction

The response from the business community to the president’s action was swift. “This is a win for Russia and a loss for American allies, U.S. jobs and global climate progress,” said Mike Sommers, president and CEO of the American Petroleum Institute. “There is no review needed to understand the clear benefits of U.S. LNG for stabilizing global energy markets, supporting thousands of American jobs and reducing emissions around the world by transitioning countries towards cleaner fuels.”

“Over the past two decades, America’s energy landscape has completely transformed because of natural gas,” wrote Marty Durbin, president of the Global Energy Institute at the U.S. Chamber of Commerce. “As our nation unlocked shale reserves and dramatically increased natural gas production, we went from a posture of energy scarcity to energy abundance and opportunity. The development has allowed the United States to provide affordable, reliable, and cleaner energy both at home and to our allies abroad.”

Up on Capitol Hill, House Republicans joined by 9 Democrats passed H.R. 7176, the “Unlocking our Domestic LNG Potential Act,” to repeal the Biden administration’s restrictions.

Sen. Joe Manchin, D-W.Va., chair of the Energy and Natural Resources Committee, said the move was “unjustified” and “should be reversed.” But Senate Democrats have no interest in taking up the House bill and little appetite to squabble with the president on this issue, though there’s a chance that the Senate could attach a provision to another bill.

What is the impact of Biden’s move? David Braeliz, CEO of RBEN Energy, LLC, wrote in a Feb. 15 blog post that they expect this pause in permitting to affect current LNG projects in the Gulf of Mexico. One project in Mexico that was going to use imported natural gas from the Peruvian and Eagle Ford, as well as boost several Canada projects using non-U.S. natural gas, as well as other major LNG exporters, such as Qatar, Russia and Iran.

Braziel observes that these moves are obviously bad for LNG project developers but also for LNG consumers, including Germany and UK.

He noted that “natural gas production and consumption in the U.S. and elsewhere has, in almost every instance resulted in lower GHG emissions because gas replacing higher-emissions alternatives.”

And while U.S. LNG exports would reduce supplies available to U.S. consumers, “RBEN projects that U.S. E&P’s would be able to increase their gas production to meet the incremental demand.”

Suspected Motive

So where did this surprise White House action come from? Writing in the Wall Street Journal on Feb. 9, Benoît Moreenne and Andrew Restuccia reported that President Biden’s decision followed an orchestrated effort by environmental organizations who enjoy the financial backing of the Rockefeller Foundation, Michael Bloomberg and other benefactors and are committed to eradicating fossil fuel use.

A skeptical Sen. Manchin suggested the move was political. In his opening statement to a Senate hearing he called to solicit testimony on the pause he said, “unfortunately, it seems the White House has already sided with climate activists determined to block any more LNG exports, and I am deeply concerned the White House will put its thumb on the scale at DOE to get the political outcome they want.”

At the hearing Deputy Energy Secretary David Turk did not provide specific guidance to Manchin and his colleagues on the timing for removing the pause, but did suggest it would take “months, not years.”

To which, according to Axios, Alaska Sen. Lisa Murkowski wryly observed, “My guess, and I think it’s probably a pretty well-educated guess, (is) that it will conveniently not be concluded prior to the election.”

By DAVID CURTISS

Some Thoughts About Unlocking the Power of AI for Environmental Geoscientists

T he intersection of artificial intelligence and science has in recent years sparked a wave of innovation that is fundamentally transforming how scientists understand and address scientific challenges in general. What was asked recently whether AI really means anything for an environmental geoscientist? So, I decided to investigate this.

As we environmental geoscientists know, we work routinely to decipher complex Earth systems. There are indeed AI-driven tools and techniques available to enhance an environmental geoscientist’s work involving monitoring, analysis, prediction and mitigation efforts, among other tasks. From monitoring and change to assessing natural hazards, AI is proving to be an invaluable ally to environmental geoscientists in our quest for a sustainable future. Here are some lessons I’ve learned about how AI might aid the environmental geoscientist in four specific areas:

Data Analysis and Interpretation

One significant contribution of AI to environmental geoscience lies in AI’s ability to analyze vast amounts of data with unprecedented speed and accuracy. I can attest firsthand that an environmental geoscientist deals with a plethora of data coming from a range of sources, including satellite imagery, geological surveys, weather data, analytical laboratory data and more. Natural Language Processing algorithms can be applied to help environmental geoscientists extract valuable information from unstructured textual data such as research papers, reports and field notes. NLP techniques can also be used to automate literature reviews, summarize scientific findings and facilitate knowledge discovery. I’ve been told that AI algorithms are especially great at recognizing patterns and anomalies within databases. This application enables the environmental geoscientist to extract meaningful insights that might otherwise remain concealed. As examples, machine-learning algorithms are capable of processing satellite imagery to identify changes in land cover, track deforestation rates, monitor urban expansion and assess the impact of human activities on ecosystems. Additionally, AI can be used to assist in monitoring and ensuring compliance with environmental regulations by analyzing data and identifying areas of concern. By automating the analysis process, AI empowers environmental geoscientists to focus on analyzing interpreting results and making informed decisions based on actionable intelligence.

Predictive Modeling and Risk Assessment

AI-driven predictive modeling is revolutionizing how environmental geoscientists assess and mitigate various natural hazards, including floods, landslides, earthquakes and wildfires. By leveraging historical data, weather forecasts, terrain characteristics and other relevant factors, AI algorithms generate

Director's Corner

By HERBERT "Bert" A. Vogler III

Divisions Report: DEG

As scientists continue to innovate and refine AI technologies, I hope the potential for collaboration between human expertise and AI will equate to a brighter, more sustainable future for generations to come.

See DEG page 29
Networking
Upload your resume to reach potential employers and meet with representatives at the Expo

Short Courses
Participate in a variety of short courses led by OU faculty, alumni and industry experts

Poster Contest
Showcase your research in the poster session for a chance to win $$$

SPRING STUDENT EXPO
MARCH 15, 2024
NATIONAL WEATHER CENTER
UNIVERSITY OF OKLAHOMA | NORMAN, OK

FOR MORE INFORMATION VISIT GEOSCIENCES.OU.EDU
Minimize Uncertainty in Your Reservoir Models.

ZEISS Microscopes for Core Analysis

When it’s critical for your pore scale analysis to be accurate.

The flow of oil and gas through subsurface reservoirs is governed by the scale of the tiny, tortuous pathways in the rock through which flow occurs. While frequently the fundamental pore, grain and mineralogical structures can be understood at these tiny scales, this often comes at the expense of a field of view representative of real geological structures. These structures can exhibit heterogeneity ranging from the kilometer to the nanometer scales. The ZEISS portfolio of light, X-ray, and electron microscopes is uniquely capable of solving these multiscale and multi-physics challenges.

Classification of shale heterogeneity: red (high porosity), blue (low porosity), green (fracture), yellow (pyrite)

zeiss.ly/324-aapg

Seeing beyond