24 February, 2015

An Analytical Model for Shale Gas Permeability

 

Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs.

Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs. Based on the kinetic theory of gases and using the regularized 13-moment method, analytical R13 AP model is introduced for predicting gas apparent permeability of nanoporous shale samples. These samples are characterized by ultratight pores and may introduce significant rarefaction effects, especially under the laboratory conditions, which cannot be accounted for in the classical hydrodynamic equations. Due to the significance of the rarefaction effects, measured values of the gas apparent permeability depend on the operating parameters, such as pressure and temperature, and gas type in addition to pore size. The R13 AP model incorporates these parameters and can predict the apparent permeability for Knudsen numbers up to unity.

Topics
  • Shale apparent permeability
  • R13 AP model
  • Molecular adsorption
Structure of the E-Symposium

Each e-symposium consists of one-hour live e-symposium, along with material for one full day of independent study. The live portion will be followed by a full day of independent study (not a live event). The one-hour live e-symposium can be accessed from any computer anywhere in the world using a high-speed internet connection. After the event is over, you will receive via email information about accessing the asynchronous segment (not live) which consists of your independent study materials, to be accessed and studied at any time. You will be able to email responses to the readings, along with your study question answers for CEU credit (if you sign up for the extended package).