Explorer Regions and Sections

Three pre-conference trips and two post-conference trips are planned in unique rich areas of Greece. The field trips will “Challenge Our Myths” by leading participants to sites where geology, history and ancient Greek culture coincide.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

In offshore areas such as the deepwater Gulf of Mexico, it’s not uncommon for oil emanating from source rocks to bypass natural trapping mechanisms and leak upward to the seafloor.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Advances in geochem technology have turned microseepage surveys into flexible, low risk and low cost complements in the hunt for oil and gas.

American Association of Petroleum Geologists (AAPG)
Explorer Regions and Sections

Cairo Meeting Set For October 27-30

American Association of Petroleum Geologists (AAPG)
Explorer Article

The oil and gas business continues to be among the crown jewels of the United Kingdom's economy, sustaining an impressive performance for over three decades -- and through innovative approaches, officials mean to keep it that way.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Everyone knows Greenland has oil. But the exploration areas are so frontier they make Dodge City look like the middle of Manhattan, and so far no one has caught a glimpse of commercial Greenland production. So who will be first?

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

A proposed project between the non-profit Geosat Committee Inc. and Chimera Geophysical Corp. would test one of the latest advancements in microseep detection.Through Project MIDAS Geosat is teaming up with Chimera again to test a new remoste sensing tool.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Oil and gas seeps have provided resources that have been recorded everywhere. Their importance led to a symposium, field trip and workshop on this topic at this year's AAPG Pacific Section meeting. Drawing earth scientists from across the United States and around the world, it served as a forum for the development of a plan for the global analysis of fluid seeps.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Tuesday, 16 August 2011, 12:00 a.m.–12:00 a.m.

The geochemistry of formation fluids (water and hydrocarbon gases) in the Uinta Basin, Utah, is evaluated at the regional scale based on fluid sampling and compilation of past records.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 19 May 2011, 12:00 a.m.–12:00 a.m.

This e-symposium presents and discusses the results of laboratory tests and research relating to determining shale prospectivity in general, and specifically in the Black Warrior Basin, Alabama.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Wednesday, 9 February 2022, 8:00 a.m.–9:00 a.m.

 This talk will provide information to better understand the principles of surface geochemistry (SG), how best to use SG data in exploration or development programs, how to develop a cost effective sampling and analytical program, and will also explore best practices for the interpretation and integration of SG data.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 29 October 2009, 12:00 a.m.–12:00 a.m.

Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 30 June 2020, 1:00 p.m.–2:00 p.m.

Visiting Geoscientist Juan Pablo Lovecchio reviews general aspects of rifting, rifts and passive margin formation and evolution through time, as well as elements of petroleum system development.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 25 June 2020, 8:00 a.m.–9:00 a.m.

Panelists will discuss current unconventional resource activities in North America, including key plays that remain competitive and potential for future growth. They also will address the key challenges for unconventional resources to stay competitive in the global market: maintaining cashflow, reducing expenditures, improving capital and production efficiencies and managing resources. Virtual Forum to be presented via Zoom.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 9 June 2020, 4:00 p.m.–5:00 p.m.

Visiting Geoscientist Susan Morrice shares her personal experience and insight in this talk about opportunities for geoscientists. “Geoscientists have advantages ... They are Time Travellers and have open minds. Bringing this creativity and innovation to your company or starting your own! Challenging times bring silver linings!”

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 2 July 2020, 4:00 p.m.–5:00 p.m.

Presented by Kevin C. Hill, Associate Professor, University of Melbourne Gravity modelling of Australia's southern margin reveals that the initial rift with Antarctica was beneath the current Ceduna Delta. A regional, high-quality seismic traverse from the coast to oceanic crust across the Bight Basin has been assembled and interpreted in detail, then balanced, restored, decompacted, and replaced at paleo-water depths. The Late Cretaceous Ceduna Delta developed above a Late Jurassic-Early Cretaceous rift basin in three stages punctuated by significant pulses of uplift and erosion across areas >100 km wide and with up to 1 km of erosion. The Cenomanian White Pointer delta prograded into deepening water and hence underwent gravitational collapse. This was terminated in the Santonian when the Antarctic margin was pulled out from below, thus supplying heat to a remnant thicker outer margin crust, causing doming and erosion. Importantly, this established the saucer-shaped geometry of the Ceduna Delta that persisted throughout its development, so that any hydrocarbons generated in the southern half of the basin would have migrated towards this outer margin high. The Tiger Formation was deposited in shallow water in a full rift basin prior to breakup, which was followed by regional thermal subsidence. The Hammerhead delta developed on the newly formed passive margin but was terminated by another pulse of uplift and erosion, perhaps associated with a change in plate motion at the end of the Cretaceous. The finite element modelling of this proposed tectonic evolution will test its validity and predict hydrocarbon generation and migration through time.

Show more
American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 30 June 2020, 3:00 p.m.–4:00 p.m.

El geocientífico visitante Juan Pablo Lovecchio revisa aspectos generales de la ruptura, grietas y formación pasiva de márgenes y evolución a través del tiempo, así como elementos del desarrollo del sistema petrolero.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 23 April 2015, 2:00 p.m.–3:00 p.m.

Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs.

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...