Learn! Blog

Looking at a formation as a source rock, then turning around and considering it a viable reservoir requires you to be able to shift your thinking and to analyze a great deal of data in a new way. If you don’t, you risk not understanding the nature of “sweet spots” and how to accurately complete or use reservoir characterization studies.

American Association of Petroleum Geologists (AAPG)
Explorer Foundation Update

It has a new name, a new energy and a new lineup of experts, all primed to spread geoscience knowledge around the world. “It” is AAPG’s newly named Global Distinguished Lecture Program – emphasis on the “global” – which dates back to 1941 but continues to be the Association’s flagship initiative for offering the latest in geologic science to AAPG affiliated geological societies and universities.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Listen to Dr. Ronald Nelson as he shares his knowledge and insights on a practical approach to defining reservoir fluid and pressure related natural fracture generation and fracture property alteration in conventional and unconventional reservoirs.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Gain a better understanding on how to evaluate, plan and make decisions with regards to unconventional resource assessment, testing, and development planning. This course oriented towards the recognition &characterization of uncertainty in unconventional reservoirs will dive well beyond tactical number-crunching into analysis, decision-making, strategy, portfolio management, and a rudimentary understanding of risk analysis

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Ireland’s Atlantic basins harbor the potential for major oil and gas discoveries in water depths ranging from 150 to more than 2,500 meters, according to the country’s Energy and Natural Resources office. Even so, exploration activity in the Irish offshore has been sporadic over the past four decades.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Despite intensive research, the origin of dolomite remains subject to considerable controversy. This is partly because some of the chemical and hydrological conditions of dolomite formations are poorly understood. Here's a great chance to see an overview of dolomite research and highlight its major advances and controversies in recent years. This will be done by revisiting specific case studies and implementing newly developed concepts and models.

Show more
American Association of Petroleum Geologists (AAPG)
Learn! Blog

We are just a few months out from the 2014 AAPG Fall Education Conference (FEC). This years FEC will be bringing together new technologies, techniques, and lessons learned to offer four great days of geosciencetraining to enhance and advance your career.

American Association of Petroleum Geologists (AAPG)
Explorer Article

I would like to suggest that far too much of the technical work purporting to guide exploration for petroleum is trivial, redundant and has little of use to offer toward finding new oil and gas accumulations. All geology is interesting; some geologic work is novel; damn little of the work we see is useful in finding new oil and gas fields!

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

AAPG member Zell Peterman, U.S. Geological Survey scientist emeritus, is busy with colleagues examining Williston Basin Bakken formation water and the role of shale filtration.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

The time-worn phrase 'everything old is new again' is an apt description for much of the revved-up activity in the oil patch these days.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 4 June 2020, 3:00 p.m.–4:00 p.m.

Salt welds form due to salt thinning by mechanical (e.g., salt-flow) and/or chemical (e.g., salt-dissolution) processes. This webinar explores how we use 3-D seismic reflection, borehole, and biostratigraphic data to constrain the thickness and composition of salt welds, and to test the predictions of analytical models for salt welding.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...