Search and Discovery Article

Rock-Eval hydrogen index (HI) is often used to compare relative maturities of a source horizon across a basin. Usually, there are several measurements from the source horizon at a single well, and the mean hydrogen index is calculated, or the S2 is plotted against TOC. The slope of the best fit line through that data is used as the representative HI for that well (sometimes referred to as the ‘slope HI ’ methodology). There is a potential flaw in both these methodologies; however, that renders the calculated HI as misleading if the source horizon being examined is not relatively uniform in source quality, vertically in the stratigraphic column. From a geologic perspective, it would be unusual for the source rock quality not to vary vertically in the stratigraphic column. Organic matter input, preservation, dilution, and sediment accumulation rate typically vary in many depositional environments over the millions of years required to create a thick source rock package. Nevertheless, there are source rocks which do display remarkable source-quality uniformity from top to bottom of the stratigraphic package. We have examined source rocks from several basins where the source quality is relatively uniform over the stratigraphic column, and source rocks where the source quality varies greatly over the stratigraphic column. Methodologies to assess hydrogen index at specific wells for the se two scenarios differ. Most geoscientists may not be familiar with why a single technique is not suitable for both these scenarios, or how to correctly use hydrogen index as a relative maturation proxy in the case where source rock quality is not uniform. We will demonstrate how to determine if your source rock quality is uniform or varied relative to HI over the stratigraphic column, and how to assign a hydrogen index to the different source facies when that source rock quality is not uniform. Further we will illustrate how to estimate the original hydrogen index of the different source facies and assign each a transformation ratio. The transformation ratio is a better proxy for relative maturity, since different source facies may have different present-day hydrogen indices, but their present-day transformation ratio should be quite similar.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

The AAPG Annual Convention and Exhibition will feature a variety of field trips that will bookend the meeting, spanning from March 26 to April 8.

American Association of Petroleum Geologists (AAPG)
Europe Blog

Sign up for your place at this two-day Geosciences Technology Workshop (GTW) hosted by AAPG Europe at Vilnius University in the heart of the Lithuanian capital. This workshop will focus on Hydrocarbon Exploration in Lithuania and the Baltic Region and will include 12 technical themes which have been designed to help launch perspectives for increased exploration in this region.

American Association of Petroleum Geologists (AAPG)
Europe Blog

The call for abstracts deadline is quickly approaching! Submit yours by 18 September 2016 to take part in the first Geosciences Technology Workshop (GTW) ever held in Lithuania. The workshop will cover everything from European basin modelling to carbonate sedimentology and offshore developments in the Baltic Sea.

American Association of Petroleum Geologists (AAPG)
Africa Blog

Enhance your skills with this AAPG short course on Sequence Stratigraphy designed for geoscientists, geophysicists, biostratigraphers & engineers needing a fundamental understanding of the principles and applications of sequence stratigraphy.  

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Come for the GTW 'Making Money with Mature Fields', and stay for a short course; either 'The Petroleum Geochemistry Toolkit for Petroleum Exploration and Development' or 'Carbonate Depositional Systems'.  All three will explore new and innovative technologies and ideas to lend increased business opportunities now and into the future.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

AAPG is excited about presenting THREE Short Courses in four days! Basic Seismic Interpretation   17-18 May 2016 'Old' (pre-1958) Electric Logs: A Quick Review 19 May 2016 Quick Guide to Carbonate Well Log Analysis   20 May 2016

American Association of Petroleum Geologists (AAPG)
Explorer Director’s Corner

Have you made plans to attend ACE this year? AAPG’s 2016 Annual Convention and Exhibition (ACE) is a dedicated opportunity for our members and other professionals to get together.

American Association of Petroleum Geologists (AAPG)
Middle East Blog

This is your last chance to register for the Source Rocks of the Middle East GTW, taking place in Abu Dhabi, UAE on 25-26 January. Do not miss out this exciting workshop!

American Association of Petroleum Geologists (AAPG)
Latin America Blog

Looking for hassle free, cost-effective ways to keep your employees and your company competitive during the industry downturn? AAPG can provide you with customized in-house courses offered at reasonable rates.

American Association of Petroleum Geologists (AAPG)
Field Seminar
Banff, Canada
Saturday, 11 May 2024, 8:00 a.m.–3:00 p.m.

Time: 8:00am - 5:00pm Fee: $300 AAPG members $350 Nonmembers $200 Academic/AAPG Emeritus Members $50 discount for workshop registrants Fee Includes: Transportation Insurance Field guide Entrance fee to Banff National Park Registration available during workshop registration This field trip will focus on the structural geology of the foothills and Front Ranges of Banff. Participants will be able to view excellent field examples of structures very similar to the producing oil and gas fields in the foothills to the west of Calgary and to learn about the complexities of sub-seismic-scale deformation. The field trip starts with an introduction to the interaction between thrust front with foreland basins and the interaction of basement trends with thrust belt geometries and (conventional) hydrocarbon fields. During the 1-day trip participants will follow a dip transect from the undeformed foreland basin, the eastern edge of the foothills marked by the triangle zone, the Front Ranges boundary and end at the Main Ranges west of Banff. Field Trip Itinerary Depart from Calgary – 8:00 a.m. Stop 1: Cochrane Retreat Road Overlook Trip overview and introduction; safety and logistics comments; interaction of thrust front with foreland basin; interaction of basement trends with thrust belt geometry and (conventional) hydrocarbon field distribution; appreciation of scale for subsurface play fairway. Stop 2: Scott Lake Stop 3: The Stony Nakoda Tim’s Classic stop, with historical importance for understanding the thrust belt and thrust geometry. Part 1 of displacement gradient on a large thrust. Most importantly, toilet stop after all the Tim’s coffee and driving. Review of Mt Yamnuska from a different perspective; preview of drive through McConnell damage zone and change in HW stratigraphy.. Stop 4: Lac des Arcs Imbricate thrust sheets in the Front Ranges and Banff Formation. Stop 5: Canmore T-junction Observe complexities of sub-seismic-scale deformation in mechanically layered rocks in the footwall of a large thrust Stop 6: Canmore strike view of the Rundle thrust Exposed strike view analogous to a cut-away of a giant conventional Foothills hydrocarbon field such as Turner Valley. Cross faults within the thrust sheet offset potential reservoir units at sub-seismic scale. Cross faults are arguably part of a regional trend associated with deeper, basement-rooted NE-SW structures. Stop 7: Mt Norquay Overlook Stop 8: Bow Falls Fracture systems in the Vega Siltstone Mbr of the Triassic Sulphur Mtn Fm. This outcrop of Vega Member siltstone of the Sulphur Mtn Fm is considered equivalent to upper Montney Fm. We will focus on the outcrop adjacent to the steps up to the Falls overlook.

Show more
American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 19 August 2010, 12:00 a.m.–12:00 a.m.

This presentation will show where there are cases of missing sections, but none of them can be attributed to normal faulting.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 28 April 2011, 12:00 a.m.–12:00 a.m.

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 10 November 2011, 12:00 a.m.–12:00 a.m.

This work investigates how heterogeneity can be defined and how we can quantify this term by describing a range of statistical heterogeneity (e.g. coefficient of variation and the Lorenz coefficient).

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 3 December 2020, 11:00 a.m.–12:00 p.m.

Patawarta Diapir, approximately 2-6km2 located in the Central Flinders Ranges, South Australia, has been interpreted as a single allochthonous salt sheet containing Tonian-aged igneous and layered evaporite sedimentary intrasalt inclusions derived from the Callanna Group. In this webinar, Rachelle Kernen describes the diapir as five primarily silty limestone inclusions (0.5-2km2), re-interpreted as Ediacaran-aged Wonoka Formation and Patsy Hill member of the Bonney Sandstone (Wilpena Group). Webinar presented Thursday 3 December 2020 at 11:00 SGT (GMT+8) Singapore time

Show more
American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 17 February 2011, 12:00 p.m.–1:00 p.m.

This presentation is designed for exploration/production geologists and geological managers or reservoir engineers.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 4 June 2020, 3:00 p.m.–4:00 p.m.

Salt welds form due to salt thinning by mechanical (e.g., salt-flow) and/or chemical (e.g., salt-dissolution) processes. This webinar explores how we use 3-D seismic reflection, borehole, and biostratigraphic data to constrain the thickness and composition of salt welds, and to test the predictions of analytical models for salt welding.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Tuesday, 9 September 2014, 2:00 p.m.–3:00 p.m.

Water cut is a big factor in gauging the success of horizontal drilling in the Mississippi Lime Play (MLP). The contributing factors are related in part to the spectrum of producing lithofacies and reservoir quality encountered that varies laterally and vertically, sometimes dramatically. 

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 14 April 2020, 4:00 p.m.–6:00 p.m.

The Upper Jurassic (Oxfordian) Smackover Formation is one of the most prolific oil and gas producers in the northeastern Gulf of Mexico coastal plain, where it deposited in a proximal carbonate ramp. This study is a comprehensive characterization of the depositional environment of the Smackover based on 3D seismic and well data from wells in the Vocation and Appleton oil fields located in the Conecuh and Manila Sub-basins in southwest Alabama.

Show more
American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 21 February 2013, 12:00 a.m.–12:00 a.m.

The course will review core data, petrophysical comparisons, rock physics modeling (including pseudo logs and mechanical properties).

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 24 September 2020, 8:30 p.m.–9:30 p.m.

In the past 3 decades the sequence stratigraphy jargon has proliferated, resulting in multiple definitions of the same surface or new surfaces and units based on drawings of deposition in response to relative changes in sea level. The close association between base-level changes, the formation of surfaces, and specific stratal stacking that define systems tracts are at the heart of the confusion. This webinar is proposed a back-to-basics approach, emphasizing key observations that can be made from any geologic data: lithofacies, lithofacies association, vertical stacking, stratal geometries, and stratal terminations.

Show more
American Association of Petroleum Geologists (AAPG)
VG Abstract

The carbonate sequences that were deposited in the now exhumed Tethyan Ocean influence many aspects of our lives today, either by supplying the energy that warms our homes and the fuel that powers our cars or providing the stunning landscapes for both winter and summer vacations. They also represent some of the most intensely studied rock formations in the world and have provided geoscientists with a fascinating insight into the turbulent nature of 250 Million years of Earth’s history. By combining studies from the full range of geoscience disciplines this presentation will trace the development of these carbonate sequences from their initial formation on the margins of large ancient continental masses to their present day locations in and around the Greater Mediterranean and Near East region. The first order control on growth patterns and carbonate platform development by the regional plate-tectonic setting, underlying basin architecture and fluctuations in sea level will be illustrated. The organisms that contribute to sequence development will be revealed to be treasure troves of forensic information. Finally, these rock sequences will be shown to contain all the ingredients necessary to form and retain hydrocarbons and the manner in which major post-depositional tectonic events led to the formation of some of the largest hydrocarbon accumulations in the world will be demonstrated.

Show more

Request a visit from Keith Gerdes!

American Association of Petroleum Geologists (AAPG)
DL Abstract

As oil and gas exploration and production occur in deeper basins and more complex geologic settings, accurate characterization and modeling of reservoirs to improve estimated ultimate recovery (EUR) prediction, optimize well placement and maximize recovery become paramount. Existing technologies for reservoir characterization and modeling have proven inadequate for delivering detailed 3D predictions of reservoir architecture, connectivity and rock quality at scales that impact subsurface flow patterns and reservoir performance. Because of the gap between the geophysical and geologic data available (seismic, well logs, cores) and the data needed to model rock heterogeneities at the reservoir scale, constraints from external analog systems are needed. Existing stratigraphic concepts and deposition models are mostly empirical and seldom provide quantitative constraints on fine-scale reservoir heterogeneity. Current reservoir modeling tools are challenged to accurately replicate complex, nonstationary, rock heterogeneity patterns that control connectivity, such as shale layers that serve as flow baffles and barriers.

Show more

Request a visit from Tao Sun!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...