HomeScience Discipline Basin Modeling and Geochemistry

Basin Modeling and Geochemistry

Search and Discovery Article

The San Joaquin Basin lies west of the Sierra Nevada Mountains and east of the San Andre as Fault. Tens of kilometers of Mesozoic and Cenozoic sediments, including deep-water organic-rich source rocks, deposited in a forearc setting, comprise the basin and have contributed to a petroleum system that generates more than 70 percent of California 's daily oil production and includes three of the 10 largest oilfields in the United States. Based on a comprehensive 3D petroleum systems model of the San Joaquin basin, published by the USGS in 2008, we further refine the modeling to account for the unique depositional and tectonic history of the basin. Here, we compare various basal heat flow scenarios to model hydrocarbon generation and calibrate the results to available temperature and vitrinite reflectance (Vr) data. We investigate two types of crustal models: a McKenzie-type rift model, and a no-rift static crustal thickness model. Crustal stretching models calculate basal heat flow resulting from stretching/thinning of mantle and crust during initial (syn-rift) and thermal (post-rift) subsidence. This method uses rock matrix radiogenic heat production values. It does not account for transient effects resulting from burial and uplift of the basin fill. The static no-rift model, alternatively, calculates the basal heat flow based on a stable or non-thinning crust and mantle over time. This method uses estimated Uranium (U), Thorium (Th), and Potassium (K) concentrations within the rock material to then calculate the rock matrix heat production. Unlike the rift model, it accounts for the transient effects resulting from burial and uplift of the basin fill, which can have a considerable additional effect on the basal heat flow. Given the low probability of crustal stretching as the starting point for basal heat flow in the San Joaquin Basin and considering the forearc nature of the basin as well as the strong concentration of U, K, and Th in the Sierran granites, we focused on and refined the no-rift models. We manually account for the transitional nature of the San Joaquin basement from hot Sierran granite on the east to cool Franciscan oceanic rocks on the west. Radiogenic heat production from solely continental crust results in models that are too warm and cannot be calibrated to well temperature and Vr data. Solely oceanic models are too cool to match well data. ‘Combined crust’ incorporates a seismically derived suture zone that allows for a transition from oceanic to granitic basement, while the ‘intermediate crust’ mixes oceanic and continental radiogenic heat production. These models generate a good match to well data to the east and westward through the transition zone. Additionally, we are able to calibrate to wells off of the Belridge and Lost Hills structures. On structure wells, however, cannot be calibrated with a crustal conductive heat flow scenario and would require (local) elevated heat flows on the order of 20 mW/m 2. This is not in agreement with the generally cooler underlying oceanic crust and suggests that there might be a different and/or additional source of heat flow. Most likely, basin-scale hydrothermal groundwater flow, both along faults and up-structure, could account for elevated Vr and temperature. Convective heat flow would be an additional overprint or enhancement to conductive basal heat flow.

Show more
American Association of Petroleum Geologists (AAPG)
Search and Discovery Article

The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system, thus creating a permeability bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates) above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems. Those exact distance numbers are subject to ongoing investigations.   A plot of the pressure data versus elevation for a given formation is critical in determining whether an accumulation is conventional or unconventional. Conventional accumulations will have hydrocarbon columns of 10s to 100s of feet with the pressure in the hydrocarbons and that in the water equal at the bottom of the accumulation (at the HC-water contact). In contrast, the unconventional accumulations will show HC column heights of 1000s of feet with the pressure in the hydrocarbon phase and the water phase being the same at the top of the accumulation (at the updip transition zone). Those significant differences are critical for understanding and differentiating these two play types. Because the system is a pore throat bottleneck with very little or minimum lateral migration, the type of hydrocarbon s are closely tied to the thermal maturity required to generate those hydrocarbons. Thus the play concept begins with two important geochemical considerations: (1) where are the source rocks and what are the kerogen types and organic richness (TOC), and (2 ) where are they mature in the basin for oil, condensate, and gas in the basin. These parameters will very quickly define the fairway for the play. Then one has to add the critical information on the reservoirs themselves: composition (brittleness), thickness, and reservoir quality (matrix porosity and permeability). In summary, these tight unconventional petroleum systems (1) are dynamic , and (2) create a regionally inverted petroleum system with water over oil over condensate over gas for source rocks wit h Type I or II kerogen types.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

Thanks to advancements in data management and seismic sensing, geophysical modeling has become indispensable in the search for oil. What will it become in the century ahead?

American Association of Petroleum Geologists (AAPG)
PSGD Blog

The AAPG Petroleum Structure and Geomechanics Division (PSGD) has announced the 2016 Best Paper Awards at the Annual Convention and Exhibition in Calgary, Alberta, Canada. Congratulations to Richard H Groshong, Jr., awarded 'Best Seminal Publication' for '3-D Structural Geology: A Practical Guide to Quantitative Surface and Subsurface Map Interpretation 2nd Edition'. We thank everyone for nominating the candidates. We also thank Bob Krantz, Bob Hatcher, and Gary Couples for their diligent work on the PSGD Best Paper Committee.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

The AAPG European Regional Conference, “Hydrocarbons in the Mediterranean: revisiting mature plays and understanding new and emerging ideas,” will be held Jan. 18-19 in Larnaca, Cyprus.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

The dynamics of fluid behavior and structural movement on the nano-scale can be complicated and not always what was expected. New research that analyzes the well information and cores using new techniques and technologies is yielding important and useful results. Welcome to an interview with Wen Zhou, Chengdu University of Technology, who discusses recent research findings.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Primary research in hydrocarbon generation is yielding new insights into the natural gas geochemical characteristics of conventional and unconventional reservoirs, along with discoveries relating to the geomechanical processes. Welcome to an interview with Chenglin Liu, China University of Petroleum-Beijing, who discusses enlightening new findings regarding the relationship between salinity and hydrocarbon geochemical characteristics.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

Don't get left behind! Drones and drone-derived digital data are the hottest growth areas around. Combine your geoscience knowledge with new technology, both on the data acquisition side (fly that drone!) and in the project design and data interpretation (make high-powered maps and see what no one else has seen!). AAPG is offering two courses and a two-day GTW to equip you with practical knowledge you can leverage into a great new career opportunity. Combining a workshop with two courses is a great way to expand your knowledge and save time in your already hectic schedule.'The New Opportunities with Drones: New Needs, FAA Rule Changes, New Technologies' workshop brings together experts, equipment providers, robotics experts, and others knowledgeable in a wide range of commercial drone usage, which includes monitoring in the oil industry, digital outcrop surveying, safety and security monitoring, utility inspection, real estate, agriculture, construction, environmental protection, and more. 'Working with Drone Data 101' short course, is beneficial to anyone interested in learning more about Unmanned Aerial Systems (UAS) and how they can play a part in mapping and information services. Drones are used in the oil and gas industry from upstream to downstream, and in many other industries. The second course, 'Use of Surface Geochemistry in Petroleum Exploration' is a one day discussion of the use of surface geochemistry in petroleum exploration for conventional production. This course will help utilize an additional tool in the toolbox to find conventional oil and gas in mature to unexploited basins.

Show more
American Association of Petroleum Geologists (AAPG)
Europe Blog

Sign up for your place at this two-day Geosciences Technology Workshop (GTW) hosted by AAPG Europe at Vilnius University in the heart of the Lithuanian capital. This workshop will focus on Hydrocarbon Exploration in Lithuania and the Baltic Region and will include 12 technical themes which have been designed to help launch perspectives for increased exploration in this region.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

How does diagenesis affect rock physics? What is the relationship of the burial history to the rock physics? Both have a dramatic impact on the rock physics properties of not only the reservoir, but also the source and seals. Welcome to an interview with Per Avseth, who discusses rock physics and quantitative seismic interpretation. He also talks with us about how developing an effective rock physics model requires the integration of geological, geophysical, geochemical, and petrophysical information.

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Palermo, Italy
Thursday, 25 April 2024, 8:00 a.m.–9:00 a.m.

This one-day field trip will provide an introduction to a Miocene-Pliocene succession of southern Sicily, which includes outcrops of the Messinian Salinity Crisis (MSC), as well as the Messinian-Zanclean GSSP (Global Boundary Stratotype Sections and Point) and Zanclean stratotype. The MSC sedimentary record consists of an evaporitic-carbonate unit at the base (the Basal Limestone), overlain the Lower Gypsum unit, in turn overlain by the Upper Gypsum unit, and sealed by transgressive chalk deposits of the Trubi Fm. The Lower Gypsum unit (massive gypsum with cm-sized selenite crystals) will be visited along the beach of Siculiana Marina (about 15 km NW of Agrigento). Next, we will visit near Capo Rossello (about 10 km NW of Agrigento) an outcrop of the Upper Gypsum unit consisting of clay-gypsum cycles and overlain by the Trubi Fm. The latter, at Scala dei Turchi beach, consists of chalk deposits arranged in a spectacular thick succession (~120 m thick) interpreted as astronomically-controlled depositional cycles. The uppermost interval of the MSC sedimentary record, including the Messinian-Zanclean GSSP, will be observed along the beach of Eraclea Minoa located about 20 km NW of Capo Rossello. Pricing Fee: €50 Attendee Limit: Min 15 - Max 50 People Registration Deadline: 11 April 2024 Field Trip Rendezvous Point Hotel nH Palermo Field Trip Leaders Antonio Caruso University of Palermo Attilio Sulli University of Palermo

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Palermo, Italy
Sunday, 21 April 2024, 8:00 a.m.–5:00 p.m.

This one-day field trip will focus on Mesozoic (Jurassic to Cretaceous) carbonates outcropping in the fold and thrust belt of western Sicily and equivalent to the aquifer complex of the Sciacca Geothermal Field located in the southwestern part of the island. Participants will have the opportunity to visit in the first stop a spectacular “drowned” carbonate-platform succession at Mt. Maranfusa located in an inactive quarry about 50 km SW of Palermo. The succession consists of Lower Jurassic peritidal cycles overlain by Middle Jurassic to Cretaceous pelagic limestone (e.g. ammonitic limestone, “chalk”) and marked by an unconformity with locally hardground. Syn-depositional Mesozoic tectonic is characterized by neptunian dykes and normal faults, whereas reverse faults, strike-slip faults, and joints are related to subsequent Cenozoic deformation. In the second stop, at Mt. San Calogero, adjacent to the picturesque coastal town of Sciacca (about 100 km south of Palermo), we will visit the surface expression of an extensive karst system linked to uprising geothermal fluids. Furthermore, we will discuss main characteristics of the Sciacca Geothermal Field and its connection to deep mantle-derived fluids. Outcrop data will be integrated with both 2D seismic lines and exploration well logs showing the stratigraphy and structure of the deep aquifer. Given the presence of faults and joints in the outcrops, this field trip can provide the participants with valuable insights into naturally fractured reservoirs at the sub-seismic scale. Pricing Fee: €50 Attendee Limit: Min15 - Max 45 People Registration Deadline: 11 April 2024 Field Trip Leaders Gianni Mallarino MOL Group Attilio Sulli University of Palermo

Show more
American Association of Petroleum Geologists (AAPG)
Field Seminar
Banff, Canada
Saturday, 11 May 2024, 8:00 a.m.–3:00 p.m.

Time: 8:00am - 5:00pm Fee: $300 AAPG members $350 Nonmembers $200 Academic/AAPG Emeritus Members $50 discount for workshop registrants Fee Includes: Transportation Insurance Field guide Entrance fee to Banff National Park Registration available during workshop registration This field trip will focus on the structural geology of the foothills and Front Ranges of Banff. Participants will be able to view excellent field examples of structures very similar to the producing oil and gas fields in the foothills to the west of Calgary and to learn about the complexities of sub-seismic-scale deformation. The field trip starts with an introduction to the interaction between thrust front with foreland basins and the interaction of basement trends with thrust belt geometries and (conventional) hydrocarbon fields. During the 1-day trip participants will follow a dip transect from the undeformed foreland basin, the eastern edge of the foothills marked by the triangle zone, the Front Ranges boundary and end at the Main Ranges west of Banff. Field Trip Itinerary Depart from Calgary – 8:00 a.m. Stop 1: Cochrane Retreat Road Overlook Trip overview and introduction; safety and logistics comments; interaction of thrust front with foreland basin; interaction of basement trends with thrust belt geometry and (conventional) hydrocarbon field distribution; appreciation of scale for subsurface play fairway. Stop 2: Scott Lake Stop 3: The Stony Nakoda Tim’s Classic stop, with historical importance for understanding the thrust belt and thrust geometry. Part 1 of displacement gradient on a large thrust. Most importantly, toilet stop after all the Tim’s coffee and driving. Review of Mt Yamnuska from a different perspective; preview of drive through McConnell damage zone and change in HW stratigraphy.. Stop 4: Lac des Arcs Imbricate thrust sheets in the Front Ranges and Banff Formation. Stop 5: Canmore T-junction Observe complexities of sub-seismic-scale deformation in mechanically layered rocks in the footwall of a large thrust Stop 6: Canmore strike view of the Rundle thrust Exposed strike view analogous to a cut-away of a giant conventional Foothills hydrocarbon field such as Turner Valley. Cross faults within the thrust sheet offset potential reservoir units at sub-seismic scale. Cross faults are arguably part of a regional trend associated with deeper, basement-rooted NE-SW structures. Stop 7: Mt Norquay Overlook Stop 8: Bow Falls Fracture systems in the Vega Siltstone Mbr of the Triassic Sulphur Mtn Fm. This outcrop of Vega Member siltstone of the Sulphur Mtn Fm is considered equivalent to upper Montney Fm. We will focus on the outcrop adjacent to the steps up to the Falls overlook.

Show more
American Association of Petroleum Geologists (AAPG)
Workshop
Palermo, Italy
Monday, 22 April Wednesday, 24 April 2024, 8:00 a.m.–5:00 p.m.

This Symposium marks a collaborative event that brings together AAPG Europe and AAPG Middle East, with a central focus on carbonates and mixed carbonate systems worldwide, while highlighting their significance within these two regions. The primary objectives are an overview of controls that govern the evolution of these systems in time and space and the characterization and prediction of their properties across scales.

American Association of Petroleum Geologists (AAPG)
Workshop
Abu Dhabi, UAE
Monday, 27 May Wednesday, 29 May 2024, 8:00 a.m.–5:00 p.m.

In order to support the energy transition, optimizing exploration and production from complex stratigraphic-diagenetic conventional and unconventional plays remains highly important. At the same time, Carbon Capture and Storage (CCS) poses new technological challenges that will impact both the industry and academia for decades to come. This 2nd edition will present reviews and discuss technology developments in geological process-based forward modeling achieved during the last 2 years. New perspectives for future technology developments and implementation in industry workflows will be discussed and with the additional focus on CO₂ storage and other sustainability-related applications, the scope of the workshop will be considerably extended.

Show more
American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 24 September 2020, 8:30 p.m.–9:30 p.m.

In the past 3 decades the sequence stratigraphy jargon has proliferated, resulting in multiple definitions of the same surface or new surfaces and units based on drawings of deposition in response to relative changes in sea level. The close association between base-level changes, the formation of surfaces, and specific stratal stacking that define systems tracts are at the heart of the confusion. This webinar is proposed a back-to-basics approach, emphasizing key observations that can be made from any geologic data: lithofacies, lithofacies association, vertical stacking, stratal geometries, and stratal terminations.

Show more
American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 1 October 2020, 11:00 a.m.–12:00 p.m.

Join AAPG Asia Pacific to hear Agus Ramdahn, PhD to hear about a method of combining Bowers Method with density-sonic cross plots to estimate overpressure in the shelfal area of the Lower Kutai Basin This webinar will be presented via Zoom on Thursday 1 October at 11:00 Singapore Time

American Association of Petroleum Geologists (AAPG)
Online Traditional Course
Tuesday, 1 January 2013, 12:00 a.m.–1:00 a.m.

In the span of a mere few months, the much of the world went from a state of exuberant self-actualization to the most primal level of survival (health, food, shelter) insecurity. Consequently, the world has changed. Shock change due to pandemic-triggered chain reactions, supply / demand and price instability, rapid technological innovation, new plays and changing markets, distributed teams and workforces, the powerful force of social media, shortages of technical expertise, and supply chain issues have come together to create new challenges and opportunities for leadership. We will analyze how the issues relate to the oil and gas business (exploration, development, oilfield services, support services, financial sector) and we will propose solutions for immediate real-world emergencies, together with longer term challenges. In addition, we will evaluate what prominent thinkers and academics have written about leadership and strategic planning.

Show more
American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Thursday, 9 November 2023, 2:00 p.m.–3:00 p.m.

Geoscientists are playing an active role in addressing sustainable development through ethical considerations as we navigate the energy transition. As the energy landscape evolves, it is critical to include all perspectives and background while listening and including the Indigenous voices from these communities as we navigate this landscape. Our speakers will highlight how they are using geoscience to advance sustainability within their respective fields, in addition to the ethical considerations for their projects.

Show more
American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Tuesday, 2 June 2020, 6:00 p.m.–7:00 p.m.

Visiting Geoscientist Xavier Moonan provides an overview of the destruction in the Los Iros area following the 6.9 magnitude earthquake that hit Trinidad and Tobago in 2018. His talk focuses on understanding the results from various post-earthquake studies conducted on the Los Iros, reviewing the theories developed to explain the origin and integrating datasets to provide an understanding of what transpired.

American Association of Petroleum Geologists (AAPG)
Webinar
Virtual Webinar
Monday, 19 October 2020, 12:00 p.m.–1:30 p.m.

In this webinar, Stephen Ehrenberg will present a review of the various processes that interact to determine the wide variations in porosity found in carbonate strata containing petroleum reserves. Presentation is via Zoom on Monday 19 October at 12:00 London time.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 29 October 2009, 12:00 a.m.–12:00 a.m.

Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 8 December 2011, 12:00 a.m.–12:00 a.m.

This e-symposium focuses on methods for predicting connectivity within clastic fluvial systems.

American Association of Petroleum Geologists (AAPG)
Online e-Symposium
Thursday, 22 July 2010, 12:00 a.m.–12:00 a.m.

Upon successful completion of this course, you will be able to describe geomechanics in shale reservoirs and discuss differences between plays.

American Association of Petroleum Geologists (AAPG)
Online Traditional Course
Wednesday, 1 January 2014, 12:00 a.m.–1:00 a.m.

Learn to critically evaluate current issues that can impact growth and sustainability of oil and gas ventures.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)
DL Abstract

Paleozoic North America has experienced multiple mountain building events, from Ordovician to Permian, on all margins of the continent. These have had a profound effect on the resulting complex basins and their associated petroleum systems. Subsequent uplift, erosion and overprinting of these ancient systems impedes the direct observation of their tectonic history. However, the basin sedimentary records are more complete, and provide additional insights into the timing and style of the mountain building events. In this study, we employ ~90 1D basin models, ~30 inverse flexural models, isopachs, and paleogeographic maps to better understand the Paleozoic history of North America.

Show more

Request a visit from Kurt W. Rudolph!

American Association of Petroleum Geologists (AAPG)

Hot Items

Book Reviews

American Association of Petroleum Geologists (AAPG)
American Association of Petroleum Geologists (AAPG)
American Association of Petroleum Geologists (AAPG)
American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...