HomeScience Play Types Deep Basin Gas

Deep Basin Gas

Explorer Emphasis Article

Author Seamus McGraw sees both the upside and downside for the landowner in the development of the Marcellus shale.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

A new technical paper takes a look at the ongoing exploration success that can be found in the eastern Mediterranean's Levant Basin

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

High resolution aeromagnetic surveys are being used with great success in Marcellus shale exploration.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

A recent study has been completed comparing North American and European shale gas and oil resource systems.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Bottoms up! The successful Barnett play is getting a second look, thanks to a new study that took a bottomsup approach to determines areas with the best potential.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Look again: The Bakken shale play is so big the U.S. Geological Survey has made a new assessment of the formation to see what has changed since the last assessment in 2008.

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

Mind games: Some strategies are better than others when it comes to involvement in unconventional resources. Think about that.

American Association of Petroleum Geologists (AAPG)
Explorer Regions and Sections

This seems like the perfect time to summarize Canadian oil and gas activity in 2012. 

American Association of Petroleum Geologists (AAPG)
Explorer Historical Highlights

After World War II, the United States suddenly found itself with nuclear explosives, a tool for which there were few obvious uses other than spectacular and indiscriminate destruction. 

American Association of Petroleum Geologists (AAPG)
Explorer President’s Column

I can remember hearing, way back in 1977, the president of a major oil company that I worked for say that the United States had run out of oil and gas – there was not much left to find and develop.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)

Related Interests

See Also ...