Learn! Blog

The “shale revolution” that occurred after the advent of universal implementation of horizontal drilling and massive, multi-stage hydraulic fracturing, was dramatically impacted by the collapse of oil and gas prices.

American Association of Petroleum Geologists (AAPG)
Explorer Historical Highlights

In 1965, G.T. Philippi, a Shell geochemist, made the novel proposal that petroleum was generated from organic matter in sediments that had been buried deeply enough to be exposed to warmer earth temperatures, converting the organic matter, with heat and time, to petroleum.

American Association of Petroleum Geologists (AAPG)
Explorer Article

The AAPG Annual Convention and Exhibition will feature a variety of field trips that will bookend the meeting, spanning from March 26 to April 8.

American Association of Petroleum Geologists (AAPG)
Explorer Article

AAPG’s newest Hedberg Conference, “Fundamental Controls on Shale Oil Resources and Production,” will be held April 28-30 in Beijing, China.

American Association of Petroleum Geologists (AAPG)
Search and Discovery Article

Subsurface electromagnetic (EM) measurements, namely galvanic resistivity, EM induction, EM propagation, and dielectric dispersion, exhibit frequency dependence due to the interfacial polarization (IP) of clay minerals, clay-sized particles, and conductive minerals. Existing oil-in-place estimation methods based on subsurface EM measurements do not account for dielectric permittivity, dielectric dispersion, and dielectric permittivity anisotropy arising from the IP effects. The conventional interpretation methods generate inaccurate oil-in-place estimates in clay- and pyrite-bearing shales because they separately interpret the multi-frequency effective conductivity and permittivity using empirical models.  We introduce a new inversion-based method for accurate oil-in-place estimation in clay- and pyrite-bearing shales. The inversion algorithm is coupled with an electrochemical model that accounts for the frequency dispersion in effective conductivity and permittivity due to the above-mentioned IP effects. The proposed method jointly processes the multi-frequency effective conductivity and permittivity values computed from the subsurface EM measurements. The proposed method assumes negligible invasion, negligible borehole rugosity, and lateral and vert ical homogeneity effects.  The successful application of the new interpretation method is documented with synthetic cases and field data. Water saturation estimates in shale formations obtained with the new interpretation method are compared to those obtained with conventional methods and laboratory measurements. Conventional interpretation of multi-frequency effective conductivity and permittivity well logs in a clay- and pyrite-rich shale formation generated water saturation estimates that varied up to 0. 5 saturation units, as a function of the operating frequency of the EM measurement, at each depth along the formation interval. A joint interpretation of multifrequency conductivity and permittivity is necessary to compute the oil-in-place estimates in such formations. Estimated values of water saturation, average grain size, and surface conductance of clays in that formation are in the range of 0.4 to 0.7, 0.5 micro meter to 5 micrometer, and 5×10 - 7 S to 9×10 - 7 S, respectively. The proposed method is a novel technique to integrate effective conductivity and permittivity at various frequencies. In doing so, the method generates frequency-independent oil-in-place estimates, prevents under-estimation of hydrocarbon saturation, and identifies by-passed zones in shales.

Show more
American Association of Petroleum Geologists (AAPG)
Explorer Article

The AAPG Annual Convention and Exhibition will feature a variety of field trips that will bookend the meeting, spanning from March 26 to April 8.

American Association of Petroleum Geologists (AAPG)
Explorer Article

The forum will include presentations given by leading experts from companies who have been successfully operating in the basin.

American Association of Petroleum Geologists (AAPG)
Explorer Article

Thanks to advancements in data management and seismic sensing, geophysical modeling has become indispensable in the search for oil. What will it become in the century ahead?

American Association of Petroleum Geologists (AAPG)
Explorer Emphasis Article

One of the most productive regions in the petroleum world for almost a century, the Permian Basin is far from tapped out, according to a new U.S. Geological Survey assessment.

American Association of Petroleum Geologists (AAPG)
Learn! Blog

The dynamics of fluid behavior and structural movement on the nano-scale can be complicated and not always what was expected. New research that analyzes the well information and cores using new techniques and technologies is yielding important and useful results. Welcome to an interview with Wen Zhou, Chengdu University of Technology, who discusses recent research findings.

American Association of Petroleum Geologists (AAPG)
VG Abstract

Production from unconventional petroleum reservoirs includes petroleum from shale, coal, tight-sand and oil-sand. These reservoirs contain enormous quantities of oil and natural gas but pose a technology challenge to both geoscientists and engineers to produce economically on a commercial scale. These reservoirs store large volumes and are widely distributed at different stratigraphic levels and basin types, offering long-term potential for energy supply. Most of these reservoirs are low permeability and porosity that need enhancement with hydraulic fracture stimulation to maximize fluid drainage. Production from these reservoirs is increasing with continued advancement in geological characterization techniques and technology for well drilling, logging, and completion with drainage enhancement. Currently, Australia, Argentina, Canada, Egypt, USA, and Venezuela are producing natural gas from low permeability reservoirs: tight-sand, shale, and coal (CBM). Canada, Russia, USA, and Venezuela are producing heavy oil from oilsand. USA is leading the development of techniques for exploring, and technology for exploiting unconventional gas resources, which can help to develop potential gas-bearing shales of Thailand. The main focus is on source-reservoir-seal shale petroleum plays. In these tight rocks petroleum resides in the micro-pores as well as adsorbed on and in the organics. Shale has very low matrix permeability (nano-darcies) and has highly layered formations with differences in vertical and horizontal properties, vertically non-homogeneous and horizontally anisotropic with complicate natural fractures. Understanding the rocks is critical in selecting fluid drainage enhancement mechanisms; rock properties such as where shale is clay or silica rich, clay types and maturation , kerogen type and maturation, permeability, porosity, and saturation. Most of these plays require horizontal development with large numbers of wells that require an understanding of formation structure, setting and reservoir character and its lateral extension. The quality of shale-gas resources depend on thickness of net pay (>100 m), adequate porosity (>2%), high reservoir pressure (ideally overpressure), high thermal maturity (>1.5% Ro), high organic richness (>2% TOC), low in clay (<50%), high in brittle minerals (quartz, carbonates, feldspars), and favourable in-situ stress. During the past decade, unconventional shale and tight-sand gas plays have become an important supply of natural gas in the US, and now in shale oil as well. As a consequence, interest to assess and explore these plays is rapidly spreading worldwide. The high production potential of shale petroleum resources has contributed to a comparably favourable outlook for increased future petroleum supplies globally. Application of 2D and 3D seismic for defining reservoirs and micro seismic for monitoring fracturing, measuring rock properties downhole (borehole imaging) and in laboratory (mineralogy, porosity, permeability), horizontal drilling (downhole GPS), and hydraulic fracture stimulation (cross-linked gel, slick-water, nitrogen or nitrogen foam) is key in improving production from these huge resources with low productivity factors.

Show more

Request a visit from Ameed Ghori!

American Association of Petroleum Geologists (AAPG)

Join a TIG

Related Interests

See Also ...