AAPG N.E.T.
Coming Soon!
Recent Posts
No posts yet.
10772
 
Preparation for the FIFA World Cup was not the only event attracting international audiences to Brazil in May. AAPG’s Geosciences Technology Workshop (GTW) Brasil, "Stratigraphic Traps and Play Concepts in Deep Water Settings," brought in 143 geoscientists representing 12 countries from the Americas, Europe and Asia.
10222
 

The Ayoluengo field, commonly cited as Spain’s only onshore oil field, was discovered in June 1964. Today, 50 years later, the field is still active, with an average production of some 100 barrels oil per day and a total cumulated oil production of nearly 17 million barrels of oil.

10218
 

The history of oil development in Alaska is often presented as a heroic tale, but long before the 1968 discovery of the Prudhoe Bay field (16 billion barrels and counting), the industry experience was marked by a great deal of frustration and failure.

9515
 

The Croatian Hydrocarbons Agency used AAPG’s Annual Convention and Exhibition (ACE) in Houston last month as an opportunity to formally announce that the country’s first offshore license round opened April 2 of this year.

9512
 

When it comes to U.S. energy policy, there arguably is no topic that creates more heated debate than that of the federal OCS (Outer Continental Shelf) leasing program.

7959
 

The petroleum trap for the Athabasca oil sands has remained elusive because it was destroyed by flexural loading of the Western Canada Sedimentary Basin during the Late Cretaceous and Paleocene. The original trap extent is preserved because the oil was biodegraded to immobile bitumen as the trap was being charged during the Late Cretaceous. Using well and outcrop data, it is possible to reconstruct the Cretaceous overburden horizons beyond the limit of present-day erosion. Sequential restoration of the reconstructed horizons reveals a megatrap at the top of the Wabiskaw-McMurray reservoir in the Athabasca area at 84 Ma (late Santonian). The megatrap is a four-way anticline with dimensions 285 x 125 km (177 x 78 mi) and maximum amplitude of 60 m (197 ft). The southeastern margin of the anticline shows good conformance to the bitumen edge for 140 km (87 mi). To the northeast of the anticline, bitumen is present in a shallower trap domain in what is interpreted to be an onlap trap onto the Canadian Shield; leakage along the onlap edge is indicated by tarry bitumen outliers preserved in basement rocks farther to the northeast. Peripheral trap domains that lie below the paleospillpoint, in northern, southern, and southwestern Athabasca, and Wabasca, are interpreted to represent a late charge of oil that was trapped by bitumen already emplaced in the anticline and the northeastern onlap trap. This is consistent with kimberlite intrusions containing live bitumen, which indicate that the northern trap domain was charged not before 78 Ma. The trap restoration has been tested using bitumen-water contact well picks. The restored picks fall into groups that are consistent both with the trap domains determined from the top reservoir restoration and the conceptual charge model in which the four-way anticline was filled first, followed by the northeastern onlap trap, and then the peripheral trap domains.

836
 
VG Abstract

With technical advances in surface seismic and downhole electrical imaging techniques, it is now possible to not only map the distribution of reservoir sandstones in the subsurface, but to accurately define the orientation of productive fairways, or “sweet-spots”, within the sequence.

Channel sands frequently have favorable reservoir characteristics. Having often been laid down in higher energy settings, they commonly have coarser and better sorted grains, less clay and improved poroperm characteristics. However, they often have limited lateral extent and shoe-string geometries which make them more difficult to predict in the subsurface.

This paper will summarize the results of four case studies and some additional examples of how channel sands, laid down in different depositional settings, have been recognized with borehole imaging. From sedimentary features and palaeocurrent directions within the sands it has been possible to determine their orientation.

1763
 
Explorer Article

Edinburgh, Scotland, has a new research center planning to open its doors in 2015. It is the Sir Charles Lyell Centre, named after Britain's 19th century geologist. The uptick of interest in emerging industries of shale oil and gas and deep sea metal mining is just one of the areas of the focus planned for the centre.

5680
 
The Heidrun field, located on the Halten Terrace of the mid-Norwegian continental shelf, was one of the first giant oil fields found in the Norwegian Sea. Traditional reservoir intervals in the Heidrun field lie within the Jurassic synrift sequence. Most Norwegian continental shelf fields have been producing from these Jurassic reservoirs for the past 30 yr. Production has since declined in these mature fields, but recently, exploration for new reservoirs has resurged in this region. The Jurassic rifted fault blocks form a narrow continental shelf in Norway, thereby greatly reducing the areal extent for exploration and development within existing fields. As the rift axis is approached farther offshore, these Jurassic reservoirs become very deep, too risky to drill, and uneconomical. This risk has prompted exploration in more recent years of the shallower Cretaceous, postrift stratigraphic succession. Cretaceous turbidites have been found in the Norwegian and North Seas, and the discovery of the Agat field in the Norwegian North Sea confirms the existence of a working petroleum system capable of charging Cretaceous reservoirs. These Cretaceous reservoirs were deposited as slope- and basin-floor fans within a series of underfilled rifted deeps along the Norwegian continental shelf and are thought to be sourced from the localized erosion of Jurassic rifted highs. We use three-dimensional seismic and well data to document the geomorphology of a deep-water, Lower Cretaceous wedge (Cromer Knoll Group) within the hanging wall of a rift-related half graben formed on the Halten Terrace offshore mid-Norway. Seismic attribute extractions taken within this Lower Cretaceous wedge reveal the presence of several lobate to elongated bodies that seem to cascade over fault-bounded terraces associated with rifted structures. These high-amplitude, elongated bodies are interpreted as deep-water sedimentary conduits that are time equivalent to the Cretaceous basin-floor fans in more distal parts of the basin to the west. These half-graben fills have the potential to contain high-quality Cretaceous sandstones that might represent a potential new reservoir interval within the Heidrun field.
3770
 

West Edmond field, located in central Oklahoma, is one of the largest oil accumulations in the Silurian–Devonian Hunton Group in this part of the Anadarko Basin. Production from all stratigraphic units in the field exceeds 170 million barrels of oil (MMBO) and 400 billion cubic feet of gas (BCFG), of which approximately 60 MMBO and 100 BCFG have been produced from the Hunton Group. Oil and gas are stratigraphically trapped to the east against the Nemaha uplift, to the north by a regional wedge-out of Hunton strata, and by intraformational diagenetic traps. Hunton Group reservoirs are the Bois d'Arc and Frisco Limestones, with lesser production from the Chimneyhill subgroup, Haragan Shale, and Henryhouse Formation.

Hunton Group cores from three wells that were examined petrographically indicate that complex diagenetic relations influence permeability and reservoir quality. Greatest porosity and permeability are associated with secondary dissolution in packstones and grainstones, forming hydrocarbon reservoirs. The overlying Devonian–Mississippian Woodford Shale is the major petroleum source rock for the Hunton Group in the field, based on one-dimensional and four-dimensional petroleum system models that were calibrated to well temperature and Woodford Shale vitrinite reflectance data. The source rock is marginally mature to mature for oil generation in the area of the West Edmond field, and migration of Woodford oil and gas from deeper parts of the basin also contributed to hydrocarbon accumulation.

«« First « Previous |1 2 3 4 | Last ››
In-Person Training
Muscat Oman 20 October, 2014 22 October, 2014 8553
 
Muscat, Oman
20-22 October 2014

This three-day workshop will be dedicated to sharing knowledge, ideas, and workflows pertaining to exploration for stratigraphically trapped hydrocarbon accumulations in the Middle East. The workshop will emphasize case studies involving both carbonates and clastics — in order to help focus explorationists in their search for these types of traps. 

14 February, 3000 14 February, 3000 7816
 
14 February, 3000 14 February, 3000 7813
 
14 February, 3000 14 February, 3000 7815
 
14 February, 3000 14 February, 3000 7812
 
Online Training
01 January, 2013 01 January, 9999 1459
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

Stratigraphic Traps

Stratigraphic Traps
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!