HomeScience 

Play Types

Deep Basin Gas

Coming Soon!
Recent Posts
No posts yet.
 

Recent focus on hydrocarbons hosted in muddy fine grained strata, often referred to as shale gas or shale oil, has increased our understanding of these relatively poorly understood depositional systems. This study will focus on the link between bedforms, depositional processes, and stratal architecture, and their relation to the laterally continuous hydrocarbon accumulations hosted within these strata.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-marine-muddy-depositional-systems-pedersen.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Oil production in North America has the last years surged due to the successful exploitation of unconventional low-permeability (tight) light oil reservoirs in North America by multistage hydraulic fractured horizontal wells.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-unconventional-tight-oil-play-types-pedersen-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The Petroleum Economics is designed for New Energy Professionals. The course consist of lecture and exercises to assist the new industry energy professionals with understanding the principles of petroleum economics; including the value of money, quantifying financials risks in petroleum investments, rates of return, forecasting cash flows and the fundamentals of capital budgeting.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/blog-learn-petroleum-economics-new-short-course-herov2.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Basins around the world hold identified potential for unconventional resource development and a combination of exploration, assessment and evaluation seems certain to uncover other favorable plays.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/stark-melissa-2016-07july.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
The AAPG course on “Reservoir Engineering for Petroleum Geologists” is designed for persons who wish to acquire a broad understanding of the factors that influence the production of oil and gas from reservoirs. It will be useful for geoscientists, land management specialists, managers and others with no previous training in reservoir engineering. This course is part of AAPG’s upcoming Fundamentals Education Conference, taking place November 9-13, in Houston, TX.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/what-do-engineers-know-that-geologists-dont-and-vice-versa-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The AAPG course on “The Petroleum System: An Investigative Method to Explore for Conventional and Unconventional Hydrocarbons,” emphasizes how the petroleum system concept can be used to more systematically investigate how hydrocarbon fluid moves from the active source rock to a conventional or unconventional accumulation and thereby reduce risk. This course is part of AAPG’s upcoming Fundamentals Education Conference, taking place November 9-13, in Houston, TX.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/ec-sec-the-petroleum-system-an-investigative-method.gif?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
The objective of the AAPG course on “Clay Minerals (Classification, Structure, Chemistry, Properties, Diagenesis) in Reservoir Evaluation” is to instill enough fundamental and applied information about clay minerals so that a person will know what questions are relevant when formulating a work flow for a project, when evaluating real data, or when trying to figure out what might have “gone wrong” during a project. This course is part of AAPG’s upcoming Fundamentals Education Conference, taking place November 9-13, in Houston, TX.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/how-important-are-clay-minerals-in-reservoir-evaluation-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
The AAPG course on “Quick Guide to Carbonate Well Log Analysis” provides just that – a quick guide that concentrates on methods used to analyze carbonate reservoirs. It is an advanced course and assumes the course participants are already well informed about basic well logging principles. This course is part of AAPG’s upcoming Fundamentals Education Conference, taking place November 9-13, in Houston, TX.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/ec-fec-quick-guide-to-carbonate-well-log-analysis.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
The AAPG course on “Rock/Fluid Interactions and Natural Fracture Development and Alteration” provides a practical approach to defining reservoir fluid and pressure related natural fracture generation and fracture property alteration in conventional and unconventional reservoirs. This course is part of AAPG’s upcoming Fundamentals Education Conference, taking place November 9-13, in Houston, TX.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Rock_Fluid Interaction.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-assessment-forecasting-and-decision-making-in-unconventional-resource-plays.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First « Previous |1 2 3 4 5 | Last ››

In-Person Training
Vilnius Lithuania 24 October, 2016 25 October, 2016 32641 Desktop /Portals/0/PackFlashItemImages/WebReady/er-gtw-gtw-hydrocarbon-exploration-lithuania-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Gas Injection, Tertiary Recovery, Reservoir Characterization, Environmental, Natural Resources, Pollution, Geochemistry and Basin Modeling, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, High Stand Deposits, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, Structure, Tectonics (General), Structural Analysis (Other), Salt Tectonics, Geomechanics and Fracture Analysis, Fold and Thrust Belts, Extensional Systems, Compressional Systems, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Alternative Resources, Gas Hydrates
 
Vilnius, Lithuania
24-25 October 2016

AAPG Europe are excited to announce the first event to be held in the beautiful capital city of Vilnius, Lithuania. This Geosciences Technology Workshop will be based around the main theme "Hydrocarbon Exploration in Lithuania and the Baltic Region" and we expect interests from Latvia, Estonia, Poland and Kaliningrad.

Lithuania 26 October, 2016 26 October, 2016 33520 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-er-core-workshop-lithuanian-geological-society-2016-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Alternative Resources, Gas Hydrates, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Tertiary Recovery, Secondary Recovery, Gas Injection, Water Flooding, Reservoir Characterization, Environmental, Natural Resources, Pollution, Water Resources, Geochemistry and Basin Modeling, Basin Modeling, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, High Stand Deposits, Structure, Fold and Thrust Belts, Extensional Systems, Salt Tectonics, Tectonics (General), Geomechanics and Fracture Analysis, Structural Analysis (Other), Compressional Systems
 
Lithuania
26 October 2016

Join AAPG Europe and the Lithuanian Geological Survey for this exciting Core Workshop. This workshop will follow on from the 'Hydrocarbon Exploration in Lithuania and the Baltic Regions' event taking place at Vilnius University on 24th – 25th October.

The Early Palaeozoic Hydrocarbon System in the Baltic Basin and adjacent territories involves Middle-Late Cambrian, the Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Graptolitic Shales source rocks and the major complexes of reservoirs, associated with Middle Cambrian sandstones, Ordovician and Silurian reefogenic and carbonate build-ups.

The major reservoirs of the Baltic Basin are:

  • The Middle Cambrian (Deimena Fm). Sandstones - Producing
  • The Early Ordovician (Tremadoc, Salantai Fm.) sandstones
  • Late Ordovician (Early Ashgill) organogenic limestones/carbonate buildups
  • Late Silurian (Late Ludlow/Pridoli) reefogenic carbonate build-ups
Core Presentation:
Cores presented from the following 3 reference wells:

1. The Middle Cambrian - the Early Ordovician quartz sandstone reservoirs

The Middle Cambrian Deimena Group sandstones comprises all the major economically important oil fields located Lithuania, Latvia, Kaliningrad district and Polish onshore and Baltic Sea offshore. The other, much less significant, potential reservoirs are the Late Ordovician carbonate build-ups of Gotland (Sweden) and Southern part of Lithuania and the Late Silurian carbonate reefogenic buildups in South Lithuania (Zdanaviciute O., Sakalauskas J. eds., 2001, Zdanaviciute, Lazauskiene 2007; Kanev et al., 1994).

The reference sections would demonstrate core from fine-grained (dominated by 0.25-0.1 mm fraction (30-75%)) quartz sandstones containing thin clay and siltstone interlayers. The sandstones are to a different degree litified by compaction and predominantly cemented by quartz and diagenetic quartz cement that has the major control on reservoir properties.

The Early Ordovician

The early Ordovician Tremadoc age (Pakerort Regional Stage, Salantai Fm.) strata distributed rather locally are a reservoir unit at the base of the Ordovician succession, comprising quartz sandstones and quartz siltstones of only 0.5 to 4 m thick. It overlays directly to the Middle Cambrian Deimena Group sandstones and together form one reservoir unit with similar reservoir properties. The formation is overlain by the Early Ordovician shales. Several small oil fields are producing from this reservoir unit in the western part of Lithuania.


2. The Late Ordovician (Early Ashgill) and Late Silurian (Late Ludlow/Pridoli) organogenic limestone and reefogenic carbonate buildups reservoirs

The Late Ordovician - The Late Silurian

The reservoir rocks within the Silurian succession are the Wenlock - Early Ludlow and Pridolian reefogenic carbonates comprising secondary dolomites and reefal limestones with thicknesses of tens of meters. Silurian sequences are locally distributed along the Eastern slope of the Baltic Basin. The Wenlockian - Early Ludlow strata are up to 28 m thick; the effective porosity ranges from 12% to 17% and average permeabilities – 12-15 mD. The most favourable conditions for the formation of non-structural traps (reef-associated, lithologic-stratigraphic and combined) are associated with the carbonates (mainly stromoporoidal and crinoidal limestones) sucession of about 90 m thick of the late Ludlow- earliest Pridoli (Minija and Ventspils Formations). The reservoir rocks has mean porosities of 6-15 % and up to 26% and permeability ~465mD, reaching up to 2400mD. The Late Silurian reservoir rocks mainly occur in central and southern Lithuania in the central part of the basin.


3. Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Llandovery Black Shales

The Late Ordovician Shales

In the central and eastern part of the Baltic Basin the potential source rocks comprises dark grey and black shales of the Late Ordovician Late Caradoc-Early Asghill Fjacka and Mossen formations. Both units are generally thin, reaching only up to 5–10 m; the thicknesses of Fjack & Mossesn Formations are 6 m and 4 m respectively. TOC content are mostly in the 0.9 to 10 % range, with occasional higher values of up to 15 %. The source rock facies are kerogen type II and II-III.

The Early Silurian Shales

Potential source rocks in the Silurian succession are found within the Llandovery, Wenlock and, presumably, Ludlow-aged strata. The Silurian source rocks are composed of dark grey and black graptolite shales and dark grey and black clayey marlstones. Within the Baltic Basin organic matter content generally ranges from 0.7 to 9–11%, but can be as high as 16.46 % (fig. 5.5.b; Zdanaviciute, Lazauskiene, 2004). In terms of petrography, the organic matter is dominated by syngenetic, sapropelic and marine material, together with vitrinite-like particles and abundant faunal remains. Detrital sapropel is scattered as very fine-grained particles and lenses. Liptinite (up to 20%) generally occurs together with dispersed liptodetrinite in sapropelic organic matter, or more rarely as scattered particles. (Zdanavičiūtė, Swadowska 2002, Zdanaviciute, Lazauskiene, 2004, 2007, 2009).

Maturities in the area of interest attain at pre-Silurian level 1.3% Ro and around 1.0% Ro at Silurian source rock level, and reach 1.9% on the prominent West-Lithuanian local temperature high Zdanaviciute, Lazauskiene, 2004, 2007, 2009)

 

Please note registration for the Core Workshop is available to attendees of the upcoming GTW "Hydrocarbon Exploration in Lithuania and the Baltic Region" on the 24th - 25th October 2016. Please click here for information about the event.

 

 

Muscat Oman 26 October, 2016 27 October, 2016 26806 Desktop /Portals/0/PackFlashItemImages/WebReady/advances-in-subsurface-imaging-herov6.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geophysics, Direct Hydrocarbon Indicators, Gravity, Magnetic, Seismic, Engineering, Reservoir Characterization, Tight Gas Sands, Subsalt Traps, Structural Traps, Stratigraphic Traps, Shale Gas, Oil Shale, Bitumen/Heavy Oil, Fractured Carbonate Reservoirs, Diagenetic Traps, Deep Basin Gas, Coalbed Methane
 
Muscat, Oman
26-27 October 2016

This two-day workshop aims at sharing knowledge and ideas on the advancements in subsurface mapping. This includes recent technologies in acquiring seismic and non seismic data, improvements in imaging the subsurface and advances in data interpretation.

Online Training
14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!