HomeScience Play Types

Play Types

Recent Posts
Bogdan Michka posted Welcome to AAPG N.E.T., an online space where y... to Read This First! in Shale Plays TIG Discussions
Bogdan Michka posted Welcome to AAPG N.E.T., an online space where y... to Read This First! in Detrital Zircon TIG Discussions
No posts yet.
 
This article reviews the mechanisms of shale gas storage and discusses the major risks or uncertainties for shale gas exploration in China. At a given temperature and pressure, the gas sorption capacities of organic-rich shales are primarily controlled by the organic matter richness but may be significantly influenced by the type and maturity of the organic matter, mineral composition (especially clay content), moisture content, pore volume and structure, resulting in different ratios of gas sorption capacity (GSC) to total organic carbon content for different shales. In laboratory experiments, the GSC of organic-rich shales increases with increasing pressure and decreases with increasing temperature. Under geologic conditions (assuming hydrostatic pressure gradient and constant thermal gradient), the GSC increases initially with depth due to the predominating effect of pressure, passes through a maximum, and then decreases because of the influence of increasing temperature at greater depth. This pattern of variation is quite similar to that observed for coals and is of great significance for understanding the changes in GSC of organic-rich shales over geologic time as a function of burial history. At an elevated temperature and pressure and with the presence of moisture, the gas sorption capacities of organic-rich shales are quite low. As a result, adsorption alone cannot protect sufficient gas for high-maturity organic-rich shales to be commercial gas reservoirs. Two models are proposed to predict the variation of GSC and total gas content over geologic time as a function of burial history. High contents of free gas in organic-rich shales can be preserved in relatively closed systems. Loss of free gas during postgeneration uplift and erosion may result in undersaturation (the total gas contents lower than the sorption capacity) and is the major risk for gas exploration in marine organic-rich shales in China.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/mechanisms-of-shale-gas-storage-implications.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Mechanisms of shale gas storage: Implications for shale gas exploration in China
 
Anomalously high porosities and permeabilities are commonly found in the fluvial channel sandstone facies of the Triassic Skagerrak Formation in the central North Sea at burial depths greater than 3200 m (10,499 ft), from which hydrocarbons are currently being produced. The aim of our study was to improve understanding of sandstone diagenesis in the Skagerrak Formation to help predict whether the facies with high porosity may be found at even greater depths. The Skagerrak sandstones comprise fine to medium-grained arkosic to lithic-arkosic arenites. We have used scanning electron microscopy, petrographic analysis, pressure history modeling, and core analysis to assess the timing of growth and origin of mineral cements, with generation, and the impact of high fluid pressure on reservoir quality. Our interpretation is that the anomalously high porosities in the Skagerrak sandstones were maintained by a history of overpressure generation and maintenance from the Late Triassic onward, in combination with early microquartz cementation and subsequent precipitation of robust chlorite grain coats. Increasing salinity of pore fluids during burial diagenesis led to pore-filling halite cements in sustained phreatic conditions. The halite pore-filling cements removed most of the remaining porosity and limited the precipitation of other diagenetic phases. Fluid flow associated with the migration of hydrocarbons during the Neogene is inferred to have dissolved the halite locally. Dissolution of halite cements in the channel sands has given rise to megapores and porosities of as much as 35% at current production depths.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/the-role-of-fluid-pressure-and-diagenetic.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the Central Graben, North Sea
 

Prolific hydrocarbon discoveries in the subsalt, commonly known as the “presalt,” section of Brazil and the conjugate African margin have created a business imperative to predict reservoir quality in lacustrine carbonates. Geothermal convection is a style of groundwater flow known to occur in rift settings, which is capable of diagenetic modification of reservoir quality. We simulated variable density groundwater flow coupled with chemical reactions to evaluate the potential for diagenesis driven by convection in subsalt carbonates.

Rates of calcite diagenesis are critically controlled by temperature gradient and fluid flux following the principles of retrograde solubility. Simulations predict that convection could operate in rift carbonates prior to salt deposition, but with rates of dissolution in the reservoir interval only on the order of 0.01 vol. %/m.y., which is too low to significantly modify reservoir quality. The exception is around permeable fault zones and/or unconformities where flow is focused and dissolution rates are amplified to 1 to 10 vol. %/m.y. and could locally modify reservoir quality. After salt deposition, simulations also predict convection with a critical function for salt rugosity. The greatest potential for dissolution at rates of 0.1 to 1 vol. %/m.y. occurs where salt welds, overlying permeable carbonates thin to 500 m (1640 ft) or less. With tens of million years residence times feasible, convection under these conditions could locally result in reservoir sweet spots with porosity modification of 1% to 10% and potentially an order of magnitude or more in reservoir permeability. Integrating quantitative model–derived predictive diagenetic concepts with traditional subsurface data sets refines exploration to production scale risking of carbonate reservoir presence and quality.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/geothermal-convection-in-south-atlantic-subsalt.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geothermal convection in South Atlantic subsalt lacustrine carbonates: Developing diagenesis and reservoir quality predictive concepts with reactive transport models
 
The Heidrun field, located on the Halten Terrace of the mid-Norwegian continental shelf, was one of the first giant oil fields found in the Norwegian Sea. Traditional reservoir intervals in the Heidrun field lie within the Jurassic synrift sequence. Most Norwegian continental shelf fields have been producing from these Jurassic reservoirs for the past 30 yr. Production has since declined in these mature fields, but recently, exploration for new reservoirs has resurged in this region. The Jurassic rifted fault blocks form a narrow continental shelf in Norway, thereby greatly reducing the areal extent for exploration and development within existing fields. As the rift axis is approached farther offshore, these Jurassic reservoirs become very deep, too risky to drill, and uneconomical. This risk has prompted exploration in more recent years of the shallower Cretaceous, postrift stratigraphic succession. Cretaceous turbidites have been found in the Norwegian and North Seas, and the discovery of the Agat field in the Norwegian North Sea confirms the existence of a working petroleum system capable of charging Cretaceous reservoirs. These Cretaceous reservoirs were deposited as slope- and basin-floor fans within a series of underfilled rifted deeps along the Norwegian continental shelf and are thought to be sourced from the localized erosion of Jurassic rifted highs. We use three-dimensional seismic and well data to document the geomorphology of a deep-water, Lower Cretaceous wedge (Cromer Knoll Group) within the hanging wall of a rift-related half graben formed on the Halten Terrace offshore mid-Norway. Seismic attribute extractions taken within this Lower Cretaceous wedge reveal the presence of several lobate to elongated bodies that seem to cascade over fault-bounded terraces associated with rifted structures. These high-amplitude, elongated bodies are interpreted as deep-water sedimentary conduits that are time equivalent to the Cretaceous basin-floor fans in more distal parts of the basin to the west. These half-graben fills have the potential to contain high-quality Cretaceous sandstones that might represent a potential new reservoir interval within the Heidrun field.
Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/seismic-geomorphological-analysis-and-hydrocarbon-potential.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Seismic geomorphological analysis and hydrocarbon potential of the Lower Cretaceous Cromer Knoll Group, Heidrun field, Norway
 

Global demand for natural gas continues to grow and the search is on to meet that demand in both the eastern and western hemispheres.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Explorer-Cover-2013-07jul-thumb.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true A Scenario of Hope for Natural Gas Challenges
 

A perfect combo – Hydraulic fracture stimulation with horizontal drilling is contributing to the shale play successes in the United States and around the world.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/Explorer-Cover-2013-07jul-thumb.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Flowback Water Provides ‘Unique Messages’
 

Think fast: A new risk-based approach to geomechanics is being used to help solve horizontal drilling problems.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/geomechanics-helps-solve-horizontal-woes-2013-07jul-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geomechanics Helps Solve Horizontal Woes
 

Some things are worth waiting for: The potential of the Tuscaloosa Marine Shale has the E&P industry chomping at the bit, awaiting the seven billion barrels of oil estimated for recovery.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/geologists-excited-about-tms-potential-2013-07july-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Once overlooked, now spotlight-grabbing Geologists Excited About TMS Potential
 

New dimensions: Geoscientists study how 3-D views of Eagle Ford outcrops are a great tool.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/eagle-ford-outcrops-taking-a-new-3-d-look-2013-07jul-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Eagle Ford Outcrops: Taking a New (3-D) Look
 

The integrated teamwork approach used to reveal the assets of the Bakken shale has been effectively used for this unconventional conference.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/sonnenberg-steve.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true URTeC spotlights integrated efforts Needed: Team-Approach to Today’s Demands
«« First |1 2 3 4 5 6 7 ... 31 32 33 34 35 36 37 ... 63 64 65 66 67 68 69 | Last ››
In-Person Training
Austin Texas United States 23 July, 2017 23 July, 2017 39084 Desktop /Portals/0/PackFlashItemImages/WebReady/URTeC2017-hero-955x400.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Member, Geochemistry and Basin Modeling, Oil and Gas Analysis, Shale Gas
 
Austin, Texas, United States
23 July 2017

This class is designed to give attendees a better understanding of unconventional “shale” hydrocarbon reservoirs, based on the geology, detailed mineralogy, organic-richness, and hydrocarbon content and demonstrate (with examples) various ways for collaboration between petrophysicists and other disciplines to achieve efficient unconventional asset development through better understanding of lateral landing selection and proper completion optimization designs.

Rio de Janeiro Acre Brazil 22 August, 2017 23 August, 2017 38190 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-lacr-optimization-of-e-p-projects-integrating-geosciences-and-engineering-from-block-acquisition-through-production-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Development and Operations, Engineering, Infill Drilling, Directional Drilling, Coring, Conventional Drilling, Reservoir Characterization, Geochemistry and Basin Modeling, Basin Modeling, Petroleum Systems, Geophysics, Seismic, Petrophysics and Well Logs, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps
 
Rio de Janeiro, Acre, Brazil
22-23 August 2017

AAPG and ABGP invite you to participate in an interactive, multidisciplinary workshop featuring presentations and discussions exploring opportunities to improve companies’ efficiency and effectiveness throughout the E&P cycle, from block acquisition and exploration to development and production.

Georgetown Barima-Waini Guyana 09 November, 2017 10 November, 2017 38161 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-lacr-reservoir-characterization-of-deep-water-systems-impact-from-exploration-to-production-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Risk Analysis, Production, Engineering, Primary Recovery, Secondary Recovery, Geochemistry and Basin Modeling, Petroleum Systems, Petrophysics and Well Logs, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Low Stand Deposits, Marine, Regressive Deposits, Slope, Structure, Tectonics (General), Deep Basin Gas, Shale Gas, Stratigraphic Traps, Tight Gas Sands
 
Georgetown, Barima-Waini, Guyana
9-10 November 2017

This course emphasizes key changes in reservoir models that have a major impact in exploration and production of these reservoirs. The course will include lectures, exercises, and observations from cores, well logs and seismic profiles. Participants will learn how to interpret and map environments of deposition (EoD’s) in deep water systems and understand how the different EoD’s and sub-EoD’s behave as reservoirs.

Marrakech Morocco 01 November, 2017 04 November, 2017 37903 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Development and Operations, Production, Infill Drilling, Geochemistry and Basin Modeling, Petroleum Systems, Source Rock, Thermal History, Geophysics, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Sequence Stratigraphy, Structure, Compressional Systems, Extensional Systems, Tectonics (General), Deep Basin Gas, Stratigraphic Traps, Structural Traps
 
Marrakech, Morocco
1-4 November 2017

This workshop provides the opportunity to learn and discuss the latest knowledge, techniques & technologies applied to petroleum reservoirs in the Paleozoic of North Africa which can be utilized to explore for and develop these reservoirs. The workshop will provide a set-up for networking, interacting & sharing expertise with fellow petroleum scientists interested in developing and producing hydrocarbon resources within the Paleozoic of North Africa.

Saskatoon Saskatchewan Canada 18 November, 2016 18 November, 2016 34465 Desktop /Portals/0/PackFlashItemImages/WebReady/dl-kitty-milliken-univ-saskatchewan-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Student, Engineering, Reservoir Characterization, Geochemistry and Basin Modeling, Source Rock, Sedimentology and Stratigraphy, Oil Shale, Shale Gas
 
Saskatoon, Saskatchewan, Canada
18 November 2016

Short Course: “Micro to Nano-Scale Features of Mudrocks”
Lecture Title: “Mudrocks (shales, mudstones) at the Scale of Grains and Pores: Current Understanding.”
Venue: University of Saskatchewan, Department of Geological Sciences, 114 Science Place, Saskatoon, SK SK7 3H5
Time: 3:30pm

Saskatoon Saskatchewan Canada 18 November, 2016 18 November, 2016 34482 Desktop /Portals/0/PackFlashItemImages/WebReady/dl-kitty-milliken-univ-saskatchewan-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Engineering, Source Rock, Reservoir Characterization, Oil Shale, Shale Gas, Student
 
Saskatoon, Saskatchewan, Canada
18 November 2016

Short Course: “Micro to Nano-Scale Features of Mudrocks”
Lecture Title: “Mudrocks (shales, mudstones) at the Scale of Grains and Pores: Current Understanding.”
Venue: University of Saskatchewan, Department of Geological Sciences, 114 Science Place, Saskatoon, SK SK7 3H5
Time: 9:00am

Online Training
23 April, 2015 23 April, 2015 16809 Desktop /Portals/0/PackFlashItemImages/WebReady/an-analytical-model-for-shale-gas-permeability-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
23 April 2015
Recent laboratory studies have revealed previously unknown behaviors in shale gas which unlock secrets of permeability and sweet spots in shale gas reservoirs. The presentation presents the findings and also goes into detail about how the new information can be applied in order to potentially improve recovery in reservoirs.
19 March, 2015 19 March, 2015 16283 Desktop /Portals/0/PackFlashItemImages/WebReady/New-Insights-into-the-Stratigraphic-Framework-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
19 March 2015

A detailed biostratigraphic analysis and stratigraphic framework of the Paleocene and Eocene Chicontepec Formation in the Tampico-Misantla basin, onshore eastern Mexico, was conducted using 33 wells.

02 December, 2014 02 December, 2014 11967 Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-multiscale-modeling-of-gas-transport-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
2 December 2014

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used.

30 October, 2014 30 October, 2014 11390 Desktop /Portals/0/PackFlashItemImages/WebReady/sc-kerogen-maturity-determinations.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
30 October 2014

Cross disciplinary workflows play an important part of successful characterization of shale reservoirs. This course discusses how the artificial kerogen maturity of organic-rich Green River shale affects the petrophysical, micro-structural, geochemical and elastic properties.

02 October, 2014 02 October, 2014 10593 Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-concepts-of-scale-horizontal-development-of-wolfcamp-shale-oil-of-the-southern-midland-basin-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
2 October 2014
This course is ideal for individuals involved in Midland Basin exploration and development. Successful development of Wolfcamp shale oil relies on complex inter-relationships (ultimately interdependencies) within and between a wide variety of scientific disciplines, financial entities, and company partnerships. 
01 January, 2014 01 January, 9999 3160 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-toc-strategic-decision-making.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
1 January 2014 - 1 January 9999

Learn to critically evaluate current issues that can impact growth and sustainability of oil and gas ventures.

24 October, 2013 24 October, 2013 1499 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geomechanical-data-from-petrophysical-logs.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
24 October 2013

This e-symposium will be introducing signal processing techniques as a means to maximize extracting geomechanical data from petrophysical logs.

01 January, 2013 01 January, 9999 1459 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-giant-oil-and-gas-fields.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

26 September, 2013 26 September, 2013 1497 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-overpressure-in-shale-gas.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
26 September 2013

The presentation will discuss key reservoir information and how to develop a predictive pressure model.

16 February, 2012 16 February, 2012 1483 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-seismically-driven-characterization-of-unconventional-shale-plays.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
16 February 2012

This presentation describes a proven workflow that uses a standard narrow azimuth 3D seismic, conventional logs, image logs and core data to build five key reservoir properties required for an optimal development of shale plays.

Request a Visit
 

In 1991, Gulf Indonesia and its partners discovered South Sumatra Basin’s first major gas field at Dayung in the Corridor PSC. A key feature of this field is that most of the reserves are held within fractured basement rocks of pre-Tertiary age. 

Request a visit from Charles Caughey!

Desktop /Portals/0/PackFlashItemImages/WebReady/vg-abstract-Discovering-Large-Gas-Fields-in-Crystalline-Basement--Unconventional-Exploration-in-Sumatra-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Related Interests

See Also ...