AAPG N.E.T.
Coming Soon!
Recent Posts
No posts yet.
3766
 
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
2287
 
Explorer Article

It don’t come easy: The oil rich Monterey Shale has proved to be the biggest conventional resource provider in California, and it promises even more – but the formation’s complex geology is just as intimidating as its potential is huge.

3553
 

Select lacustrine and marine depositional settings show a spectrum of styles of carbonate deposition and illustrate the types of carbonates, with an emphasis on microbialites and tufa, to be expected in early rift settings. Early rift lake examples examined in this review article are all from East Africa: Lakes Turkana, Bogoria, Natron and Magadi, Manyara, and Tanganyika. Other lake examples include four from the western United States (Great Salt Lake and high lake level Lake Bonneville, Mono Lake and high lake level Russell Lake, Pyramid Lake and high lake level Lake Lahontan, and Searles Lake) and two from Australia (Lakes Clifton and Thetis). Marine basin examples are the Hamelin Pool part of Shark Bay from Australia (marginal marine) and the Red Sea (marine rift).

Landsat images and digital elevation models for each example are used to delineate present and past lake-basin margins based on published lake-level elevations, and for some examples, the shorelines representing different lake levels can be compared to evaluate how changes in size, shape, and lake configuration might have impacted carbonate development. The early rift lakes show a range of characteristics to be expected in lacustrine settings during the earliest stages of continental extension and rifting, whereas the Red Sea shows well advanced rifting with marine incursion and reef–skeletal sand development. Collectively, the lacustrine examples show a wide range of sizes, with several of them being large enough that they could produce carbonate deposits of potential economic interest. Three of the areas—Great Salt Lake and high lake level Lake Bonneville, Pyramid Lake and high lake level Lake Lahontan, and the Red Sea—are exceedingly complex in that they illustrate a large degree of potential depositional facies heterogeneity because of their size, irregular pattern, and connectivity of subbasins within the overall basin outline.

3526
 

We reviewed the tectonostratigraphic evolution of the Jurassic–Cenozoic collision between the North American and the Caribbean plate using more than 30,000 km (18,641 mi) of regional two-dimensional (2-D) academic seismic lines and Deep Sea Drilling Project wells of Leg 77. The main objective is to perform one-dimensional subsidence analysis and 2-D flexural modeling to better understand how the Caribbean collision may have controlled the stratigraphic evolution of the offshore Cuba region.

Five main tectonic phases previously proposed were recognized: (1) Late Triassic–Jurassic rifting between South and North America that led to the formation of the proto-Caribbean plate; this event is interpreted as half grabens controlled by fault family 1 as the east-northeast–south-southwest–striking faults; (2) Middle–Late Jurassic anticlockwise rotation of the Yucatan block and formation of the Gulf of Mexico; this event resulted in north-northwest–south-southeast–striking faults of fault family 2 controlling half-graben structures; (3) Early Cretaceous passive margin development characterized by carbonate sedimentation; sedimentation was controlled by normal subsidence and eustatic changes, and because of high eustatic seas during the Late Cretaceous, the carbonate platform drowned; (4) Late Cretaceous–Paleogene collision between the Caribbean plate, resulting in the Cuban fold and thrust belt province, the foreland basin province, and the platform margin province; the platform margin province represents the submerged paleoforebulge, which was formed as a flexural response to the tectonic load of the Great Arc of the Caribbean during initial Late Cretaceous–Paleocene collision and foreland basin development that was subsequently submerged during the Eocene to the present water depths as the arc tectonic load reached the maximum collision; and (5) Late Cenozoic large deep-sea erosional features and constructional sediment drifts related to the formation of the Oligocene–Holocene Loop Current–Gulf Stream that flows from the northern Caribbean into the Straits of Florida and to the north Atlantic.

2208
 
Explorer Article

One more time: The AAPG Foundation’s “explorer-in-residence,” Susan Eaton, is returning to Antarctica again on a scientific expedition to study the geology and the climate found at the Bottom of the World.

2027
 
Explorer Spotlight On…

The Caribbean Basins Tectonics Hydrocarbon project is now in the stretch drive of its planned triple-phase program.

2004
 

A gentleman, a scholar and a great geologist: A look at the life and legacy of Charles Hutchison.

1981
 

Historical Highlights looks at the origin of the Caribbean, a geological puzzle. Just exactly where did it come from?

1982
 
Explorer Article

Spreading the word: Nine speakers have been selected for AAPG’s prestigiousDistinguished Lecture program for the 2012-13 North American tours.

1907
 
Explorer Emphasis Article

Early detection: A Canadian geophysicist is finding success by incorporating existing 3-D data to determine fracture networks in the Bakken Shale.

«« First |1 2 3 4 5 6 7 | Last ››
In-Person Training
Midland Texas United States 14 January, 2015 14 January, 2015 13531
 
Midland, Texas, United States
14 January 2015

The Midland Playmaker Forum is focused on new and emerging plays of interest to sections or regions, with a broad global appeal to explorers in all locations. Its emphasis is the process of turning a prospect into a discovery and therefore complements the existing prospect expos.

Oklahoma City Oklahoma United States 19 February, 2015 19 February, 2015 11378
 
Oklahoma City, Oklahoma, United States
19 February 2015

This year’s Mississippian Lime Forum unleashes science, technology, and experience to solve persistent puzzles, and dramatically improve economics. Consider 2015 a breakthrough year as new, sometimes controversial new techniques and technologies are being implemented for the first time.

London United Kingdom 09 March, 2015 10 March, 2015 13537
 
London, United Kingdom
9-10 March 2015

The London Playmaker Forum is focused on new and emerging plays of interest to sections or regions, with a broad global appeal to explorers in all locations. Its emphasis is the process of turning a prospect into a discovery and therefore complements the existing prospect expos.

Austin Texas United States 21 April, 2015 23 April, 2015 1518
 
Austin, Texas, United States
21-23 April 2015

The overall goal of this course is to provide tools for efficient and effective re-exploration and development. It uses a two-part approach. First it uses petrophysical analysis to understand all that can be derived from examination of standard open-hole logs. This is followed by integrated approaches to discover key factors controlling oil and gas distribution in carbonate reservoirs in the greater Midcontinent USA. Methodologies and workflows reviewed include geosteering and evaluation of horizontal wells and optimizing carbon storage utilization and management.

Watkins Glen New York United States 15 June, 2015 19 June, 2015 147
 
Watkins Glen, New York, United States
15-19 June 2015

The attendee will gain a working knowledge concerning how faults and fractures develop and their terminology, methodologies utilized in collecting and analyzing fracture data, characteristics of faults and fractures that affect the sedimentary units (including black shales) in the northern Appalachian Basin of New York state, and tectonics that led to the formation of the structures in the northern Appalachian Basin and the adjacent Appalachian Orogen.

Barcelona Spain 14 September, 2015 18 September, 2015 153
 
Barcelona, Spain
14-18 September 2015

Participants will examine illustrative outcrops of thrusts, fault-related folds, stratal architectures and facies of depositional systems affected by growing structures, which are good analogues for hydrocarbon reservoirs. Objectives include interpreting complex thrust structures, identifying and understanding strain and fracture systems in fold-thrust belts, and analyzing patterns of growth strata in areas with synsedimentary folding.

14 February, 3000 14 February, 3000 7812
 
14 February, 3000 14 February, 3000 7816
 
14 February, 3000 14 February, 3000 7815
 
Online Training
01 January, 2013 01 January, 9999 1459
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

28 April, 2011 28 April, 2011 1471
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

03 June, 2010 03 June, 2010 1460
 
3 June 2010

Upon successful completion of this course, you will be able to describe faults and fractures in carbonates, black shales, and coarser clastics as they occur in the northern Appalachian Basin.

14 February, 3000 14 February, 3000 7817
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!