AAPG N.E.T.
Coming Soon!
Recent Posts
No posts yet.
2629
 
Explorer Emphasis Article

Major 'Caribbean plate' survey by Moscow-based consortium 'Geology Without Limits' to commence soon, will bring together leading scientists from around the world.

2622
 
Explorer Article

Antartica provides geoscientists with an outstanding outdoor laboratory to research planetary processes.

2605
 
Explorer Emphasis Article

After decades spent visiting Morocco and neighboring Algeria, an AAPG member who's led countless field trips to some of the earth's most exotic places says the two old countries are evolving into modern times.

5682
 

Prolific hydrocarbon discoveries in the subsalt, commonly known as the “presalt,” section of Brazil and the conjugate African margin have created a business imperative to predict reservoir quality in lacustrine carbonates. Geothermal convection is a style of groundwater flow known to occur in rift settings, which is capable of diagenetic modification of reservoir quality. We simulated variable density groundwater flow coupled with chemical reactions to evaluate the potential for diagenesis driven by convection in subsalt carbonates.

Rates of calcite diagenesis are critically controlled by temperature gradient and fluid flux following the principles of retrograde solubility. Simulations predict that convection could operate in rift carbonates prior to salt deposition, but with rates of dissolution in the reservoir interval only on the order of 0.01 vol. %/m.y., which is too low to significantly modify reservoir quality. The exception is around permeable fault zones and/or unconformities where flow is focused and dissolution rates are amplified to 1 to 10 vol. %/m.y. and could locally modify reservoir quality. After salt deposition, simulations also predict convection with a critical function for salt rugosity. The greatest potential for dissolution at rates of 0.1 to 1 vol. %/m.y. occurs where salt welds, overlying permeable carbonates thin to 500 m (1640 ft) or less. With tens of million years residence times feasible, convection under these conditions could locally result in reservoir sweet spots with porosity modification of 1% to 10% and potentially an order of magnitude or more in reservoir permeability. Integrating quantitative model–derived predictive diagenetic concepts with traditional subsurface data sets refines exploration to production scale risking of carbonate reservoir presence and quality.

5680
 
The Heidrun field, located on the Halten Terrace of the mid-Norwegian continental shelf, was one of the first giant oil fields found in the Norwegian Sea. Traditional reservoir intervals in the Heidrun field lie within the Jurassic synrift sequence. Most Norwegian continental shelf fields have been producing from these Jurassic reservoirs for the past 30 yr. Production has since declined in these mature fields, but recently, exploration for new reservoirs has resurged in this region. The Jurassic rifted fault blocks form a narrow continental shelf in Norway, thereby greatly reducing the areal extent for exploration and development within existing fields. As the rift axis is approached farther offshore, these Jurassic reservoirs become very deep, too risky to drill, and uneconomical. This risk has prompted exploration in more recent years of the shallower Cretaceous, postrift stratigraphic succession. Cretaceous turbidites have been found in the Norwegian and North Seas, and the discovery of the Agat field in the Norwegian North Sea confirms the existence of a working petroleum system capable of charging Cretaceous reservoirs. These Cretaceous reservoirs were deposited as slope- and basin-floor fans within a series of underfilled rifted deeps along the Norwegian continental shelf and are thought to be sourced from the localized erosion of Jurassic rifted highs. We use three-dimensional seismic and well data to document the geomorphology of a deep-water, Lower Cretaceous wedge (Cromer Knoll Group) within the hanging wall of a rift-related half graben formed on the Halten Terrace offshore mid-Norway. Seismic attribute extractions taken within this Lower Cretaceous wedge reveal the presence of several lobate to elongated bodies that seem to cascade over fault-bounded terraces associated with rifted structures. These high-amplitude, elongated bodies are interpreted as deep-water sedimentary conduits that are time equivalent to the Cretaceous basin-floor fans in more distal parts of the basin to the west. These half-graben fills have the potential to contain high-quality Cretaceous sandstones that might represent a potential new reservoir interval within the Heidrun field.
2544
 

Were there enough arguments to champion a firm stand for a Pacific origin of the Caribbean lithosphere, as Kevin Burke, Bruce Malfait and others had suggested?

3766
 
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
2287
 
Explorer Article

It don’t come easy: The oil rich Monterey Shale has proved to be the biggest conventional resource provider in California, and it promises even more – but the formation’s complex geology is just as intimidating as its potential is huge.

3553
 

Select lacustrine and marine depositional settings show a spectrum of styles of carbonate deposition and illustrate the types of carbonates, with an emphasis on microbialites and tufa, to be expected in early rift settings. Early rift lake examples examined in this review article are all from East Africa: Lakes Turkana, Bogoria, Natron and Magadi, Manyara, and Tanganyika. Other lake examples include four from the western United States (Great Salt Lake and high lake level Lake Bonneville, Mono Lake and high lake level Russell Lake, Pyramid Lake and high lake level Lake Lahontan, and Searles Lake) and two from Australia (Lakes Clifton and Thetis). Marine basin examples are the Hamelin Pool part of Shark Bay from Australia (marginal marine) and the Red Sea (marine rift).

Landsat images and digital elevation models for each example are used to delineate present and past lake-basin margins based on published lake-level elevations, and for some examples, the shorelines representing different lake levels can be compared to evaluate how changes in size, shape, and lake configuration might have impacted carbonate development. The early rift lakes show a range of characteristics to be expected in lacustrine settings during the earliest stages of continental extension and rifting, whereas the Red Sea shows well advanced rifting with marine incursion and reef–skeletal sand development. Collectively, the lacustrine examples show a wide range of sizes, with several of them being large enough that they could produce carbonate deposits of potential economic interest. Three of the areas—Great Salt Lake and high lake level Lake Bonneville, Pyramid Lake and high lake level Lake Lahontan, and the Red Sea—are exceedingly complex in that they illustrate a large degree of potential depositional facies heterogeneity because of their size, irregular pattern, and connectivity of subbasins within the overall basin outline.

3526
 

We reviewed the tectonostratigraphic evolution of the Jurassic–Cenozoic collision between the North American and the Caribbean plate using more than 30,000 km (18,641 mi) of regional two-dimensional (2-D) academic seismic lines and Deep Sea Drilling Project wells of Leg 77. The main objective is to perform one-dimensional subsidence analysis and 2-D flexural modeling to better understand how the Caribbean collision may have controlled the stratigraphic evolution of the offshore Cuba region.

Five main tectonic phases previously proposed were recognized: (1) Late Triassic–Jurassic rifting between South and North America that led to the formation of the proto-Caribbean plate; this event is interpreted as half grabens controlled by fault family 1 as the east-northeast–south-southwest–striking faults; (2) Middle–Late Jurassic anticlockwise rotation of the Yucatan block and formation of the Gulf of Mexico; this event resulted in north-northwest–south-southeast–striking faults of fault family 2 controlling half-graben structures; (3) Early Cretaceous passive margin development characterized by carbonate sedimentation; sedimentation was controlled by normal subsidence and eustatic changes, and because of high eustatic seas during the Late Cretaceous, the carbonate platform drowned; (4) Late Cretaceous–Paleogene collision between the Caribbean plate, resulting in the Cuban fold and thrust belt province, the foreland basin province, and the platform margin province; the platform margin province represents the submerged paleoforebulge, which was formed as a flexural response to the tectonic load of the Great Arc of the Caribbean during initial Late Cretaceous–Paleocene collision and foreland basin development that was subsequently submerged during the Eocene to the present water depths as the arc tectonic load reached the maximum collision; and (5) Late Cenozoic large deep-sea erosional features and constructional sediment drifts related to the formation of the Oligocene–Holocene Loop Current–Gulf Stream that flows from the northern Caribbean into the Straits of Florida and to the north Atlantic.

«« First |1 2 3 4 5 6 7 | Last ››
In-Person Training
Barcelona Spain 22 September, 2014 26 September, 2014 153
 
Barcelona, Spain
22-26 September 2014

Participants will examine illustrative outcrops of thrusts, fault-related folds, stratal architectures and facies of depositional systems affected by growing structures, which are good analogues for hydrocarbon reservoirs. Objectives include interpreting complex thrust structures, identifying and understanding strain and fracture systems in fold-thrust belts, and analyzing patterns of growth strata in areas with synsedimentary folding.

Oklahoma City Oklahoma United States 19 February, 2015 19 February, 2015 11378
 
Oklahoma City, Oklahoma, United States
19 February 2015

 

14 February, 3000 14 February, 3000 7815
 
14 February, 3000 14 February, 3000 7813
 
14 February, 3000 14 February, 3000 7816
 
14 February, 3000 14 February, 3000 7812
 
Online Training
01 January, 2013 01 January, 9999 1459
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

28 April, 2011 28 April, 2011 1471
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

03 June, 2010 03 June, 2010 1460
 
3 June 2010

Upon successful completion of this course, you will be able to describe faults and fractures in carbonates, black shales, and coarser clastics as they occur in the northern Appalachian Basin.

14 February, 3000 14 February, 3000 7817
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!