HomeScience Discipline 

Structure

Tectonics (General)

AAPG N.E.T.
Coming Soon!
Recent Posts
No posts yet.
 
Once we’ve completed a study most of us geologists feel that despite the incomplete data with which we started, our insight has overcome that basic limitation. Ours, however, is not an exact science– and the all-too-frequent dry wildcats return us to the level of fallible mortals.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/the-debate-2-whats-on-the-caribbean-plate-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

To be an innovator in the never-ending search for new oil and gas resources, a good geologist needs to escape the stagnating perils of paradigm paralysis by being equal parts Captain Kirk and Mr. Spock.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dengo-carlos-2014-05may.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Current AAPG Distinguished Lecturer Webster Mohriak is one of the confirmed keynote speakers for the upcoming Atlantic Realm Conjugate Margins Conference, set this August in St. John’s, Newfoundland. Retiring in 2011 after

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/mohriak-webster-2014-03mar.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Winning Hearts and Minds: Colombia and Latin American prospects offer high promise and difficult hurdles in the form of local political and public resistance.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/geoscientists-dream-complicated-by-politics-pr-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Energized by the recent Statoil ASA-operated Bay du Nord light oil discovery in Newfoundland’s offshore Flemish Pass Basin, earth scientists are gearing up to host the fourth Atlantic Realm Conjugate Margins Conference in St. John’s, Newfoundland, Aug. 20-22.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/conference-conjugates-researchers,-explorers-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Interpretation of seismic data from the Sorvestsnaget Basin, southwest Barents Sea, demonstrates gradual middle Eocene basin infilling (from the north) generated by southward-prograding shelf-margin clinoforms. The basin experienced continued accommodation development during the middle Eocene because of differential subsidence caused by the onset of early Eocene sea-floor spreading in the Norwegian-Greenland Sea, faulting, salt movement, and different tectonic activity between the Sorvestsnaget Basin and Veslemoy high. During this time, the margin shows transformation from an initially high-relief margin to a progradation in the final stage. The early stage of progradation is characterized by the establishment of generally oblique clinoform shifts creating a flat shelf-edge trajectory that implies a gentle falling or stable relative sea level and low accommodation-to-sediment supply ratio (lt1) in the topsets. During the early stage of basin development, the high-relief margin, narrow shelf, stable or falling relative sea level, seismicity, and presumably high sedimentation rate caused accumulation of thick and areally extensive deep-water fans. Seismic-scale sandstone injections deform the fans.

A fully prograding margin developed when the shelf-to-basin profile lowered, apparently because of increased subsidence of the northern part. This stage of the basin development is generally characterized by the presence of sigmoid clinoform shifts creating an ascending shelf-edge trajectory that is implying steady or rising relative sea level with an accommodation-to-sediment supply ratio of greater than 1, implying sand accumulation on the shelf. This study suggests that some volume of sand was transported into the deep water during relative sea level rise considering the narrow shelf and inferred high rates of sediment supply.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/evolution-of-shelf-margin-clinoforms-and.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

Craquelure, the fine pattern of cracks found in old paintings, presents a rare opportunity to reach beyond the physical sciences for help in understanding a geological process as inscrutable as the development of joints in a fractured reservoir.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The Guadalupe Mountains (USA) expose shelf to basin cross-sections of the Permian Capitan depositional system along 70 km of depositional strike, providing an excellent outcrop analog for studying the processes that generate early fractures within carbonate platform strata.

American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

In his classic 1965 GSA Bulletin paper “Origin of ‘Reverse Drag’ on the Downthrown Side of Normal Faults” Hamblin presented a conceptual model linking the formation of reverse drag (the down-warping of hanging wall strata toward a normal fault) to slip on faults with listric (curved, concave up) cross-sectional profiles. Although this model has been widely accepted, some authors have noted that reverse drag may also form in response to slip on planar faults that terminate at depth. A universal explanation for the origin of reverse drag, a common element of extensional terranes, thus remains elusive almost 50 years after Hamblin’s seminal paper on the subject.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 

The results of regional deep seismic acquisition in the South Atlantic continental margins have shed new lights on the birth and development of sedimentary basins formed during the Gondwana breakup. Recent models of mantle exhumation as observed in the deep water Iberian margin have been applied extensively to the interpretation of several basins in the Eastern Brazilian and West African conjugate margins. However, the tectonic development of these basins is markedly different from the magma-poor margins, and in this lecture we emphasize the contrasts from the tectono-sedimentary features imaged in deep-penetrating seismic profiles that extend from the platform towards the oceanic crust, which indicate that the Red Sea constitutes a better analogue for the birth of divergent continental margins.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First |1 2 3 4 5 6 7 8 | Last ››
In-Person Training
Vilnius Lithuania 24 October, 2016 25 October, 2016 32641 Desktop /Portals/0/PackFlashItemImages/WebReady/er-gtw-gtw-hydrocarbon-exploration-lithuania-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Gas Injection, Tertiary Recovery, Reservoir Characterization, Environmental, Natural Resources, Pollution, Geochemistry and Basin Modeling, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, High Stand Deposits, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, Structure, Tectonics (General), Structural Analysis (Other), Salt Tectonics, Geomechanics and Fracture Analysis, Fold and Thrust Belts, Extensional Systems, Compressional Systems, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Alternative Resources, Gas Hydrates
 
Vilnius, Lithuania
24-25 October 2016

AAPG Europe are excited to announce the first event to be held in the beautiful capital city of Vilnius, Lithuania. This Geosciences Technology Workshop will be based around the main theme "Hydrocarbon Exploration in Lithuania and the Baltic Region" and we expect interests from Latvia, Estonia, Poland and Kaliningrad.

Lithuania 26 October, 2016 26 October, 2016 33520 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-er-core-workshop-lithuanian-geological-society-2016-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Alternative Resources, Gas Hydrates, Deep Basin Gas, Fractured Carbonate Reservoirs, Shale Gas, Stratigraphic Traps, Structural Traps, Subsalt Traps, Business and Economics, Economics, Reserve Estimation, Development and Operations, Engineering, Conventional Drilling, Coring, Production, Hydraulic Fracturing, Primary Recovery, Tertiary Recovery, Secondary Recovery, Gas Injection, Water Flooding, Reservoir Characterization, Environmental, Natural Resources, Pollution, Water Resources, Geochemistry and Basin Modeling, Basin Modeling, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Geophysics, Direct Hydrocarbon Indicators, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Carbonates, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Low Stand Deposits, Marine, Shelf Sand Deposits, Transgressive Deposits, Sequence Stratigraphy, High Stand Deposits, Structure, Fold and Thrust Belts, Extensional Systems, Salt Tectonics, Tectonics (General), Geomechanics and Fracture Analysis, Structural Analysis (Other), Compressional Systems
 
Lithuania
26 October 2016

Join AAPG Europe and the Lithuanian Geological Survey for this exciting Core Workshop. This workshop will follow on from the 'Hydrocarbon Exploration in Lithuania and the Baltic Regions' event taking place at Vilnius University on 24th – 25th October.

The Early Palaeozoic Hydrocarbon System in the Baltic Basin and adjacent territories involves Middle-Late Cambrian, the Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Graptolitic Shales source rocks and the major complexes of reservoirs, associated with Middle Cambrian sandstones, Ordovician and Silurian reefogenic and carbonate build-ups.

The major reservoirs of the Baltic Basin are:

  • The Middle Cambrian (Deimena Fm). Sandstones - Producing
  • The Early Ordovician (Tremadoc, Salantai Fm.) sandstones
  • Late Ordovician (Early Ashgill) organogenic limestones/carbonate buildups
  • Late Silurian (Late Ludlow/Pridoli) reefogenic carbonate build-ups
Core Presentation:
Cores presented from the following 3 reference wells:

1. The Middle Cambrian - the Early Ordovician quartz sandstone reservoirs

The Middle Cambrian Deimena Group sandstones comprises all the major economically important oil fields located Lithuania, Latvia, Kaliningrad district and Polish onshore and Baltic Sea offshore. The other, much less significant, potential reservoirs are the Late Ordovician carbonate build-ups of Gotland (Sweden) and Southern part of Lithuania and the Late Silurian carbonate reefogenic buildups in South Lithuania (Zdanaviciute O., Sakalauskas J. eds., 2001, Zdanaviciute, Lazauskiene 2007; Kanev et al., 1994).

The reference sections would demonstrate core from fine-grained (dominated by 0.25-0.1 mm fraction (30-75%)) quartz sandstones containing thin clay and siltstone interlayers. The sandstones are to a different degree litified by compaction and predominantly cemented by quartz and diagenetic quartz cement that has the major control on reservoir properties.

The Early Ordovician

The early Ordovician Tremadoc age (Pakerort Regional Stage, Salantai Fm.) strata distributed rather locally are a reservoir unit at the base of the Ordovician succession, comprising quartz sandstones and quartz siltstones of only 0.5 to 4 m thick. It overlays directly to the Middle Cambrian Deimena Group sandstones and together form one reservoir unit with similar reservoir properties. The formation is overlain by the Early Ordovician shales. Several small oil fields are producing from this reservoir unit in the western part of Lithuania.


2. The Late Ordovician (Early Ashgill) and Late Silurian (Late Ludlow/Pridoli) organogenic limestone and reefogenic carbonate buildups reservoirs

The Late Ordovician - The Late Silurian

The reservoir rocks within the Silurian succession are the Wenlock - Early Ludlow and Pridolian reefogenic carbonates comprising secondary dolomites and reefal limestones with thicknesses of tens of meters. Silurian sequences are locally distributed along the Eastern slope of the Baltic Basin. The Wenlockian - Early Ludlow strata are up to 28 m thick; the effective porosity ranges from 12% to 17% and average permeabilities – 12-15 mD. The most favourable conditions for the formation of non-structural traps (reef-associated, lithologic-stratigraphic and combined) are associated with the carbonates (mainly stromoporoidal and crinoidal limestones) sucession of about 90 m thick of the late Ludlow- earliest Pridoli (Minija and Ventspils Formations). The reservoir rocks has mean porosities of 6-15 % and up to 26% and permeability ~465mD, reaching up to 2400mD. The Late Silurian reservoir rocks mainly occur in central and southern Lithuania in the central part of the basin.


3. Late Ordovician (Mossen & Fjacka Formations) and the Early Silurian Llandovery Black Shales

The Late Ordovician Shales

In the central and eastern part of the Baltic Basin the potential source rocks comprises dark grey and black shales of the Late Ordovician Late Caradoc-Early Asghill Fjacka and Mossen formations. Both units are generally thin, reaching only up to 5–10 m; the thicknesses of Fjack & Mossesn Formations are 6 m and 4 m respectively. TOC content are mostly in the 0.9 to 10 % range, with occasional higher values of up to 15 %. The source rock facies are kerogen type II and II-III.

The Early Silurian Shales

Potential source rocks in the Silurian succession are found within the Llandovery, Wenlock and, presumably, Ludlow-aged strata. The Silurian source rocks are composed of dark grey and black graptolite shales and dark grey and black clayey marlstones. Within the Baltic Basin organic matter content generally ranges from 0.7 to 9–11%, but can be as high as 16.46 % (fig. 5.5.b; Zdanaviciute, Lazauskiene, 2004). In terms of petrography, the organic matter is dominated by syngenetic, sapropelic and marine material, together with vitrinite-like particles and abundant faunal remains. Detrital sapropel is scattered as very fine-grained particles and lenses. Liptinite (up to 20%) generally occurs together with dispersed liptodetrinite in sapropelic organic matter, or more rarely as scattered particles. (Zdanavičiūtė, Swadowska 2002, Zdanaviciute, Lazauskiene, 2004, 2007, 2009).

Maturities in the area of interest attain at pre-Silurian level 1.3% Ro and around 1.0% Ro at Silurian source rock level, and reach 1.9% on the prominent West-Lithuanian local temperature high Zdanaviciute, Lazauskiene, 2004, 2007, 2009)

 

Please note registration for the Core Workshop is available to attendees of the upcoming GTW "Hydrocarbon Exploration in Lithuania and the Baltic Region" on the 24th - 25th October 2016. Please click here for information about the event.

 

 

Online Training
01 January, 2013 01 January, 9999 1459 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-giant-oil-and-gas-fields.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

03 June, 2010 03 June, 2010 1460 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-marcellus-utica-in-the-field.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
3 June 2010

Upon successful completion of this course, you will be able to describe faults and fractures in carbonates, black shales, and coarser clastics as they occur in the northern Appalachian Basin.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!