Coming Soon!
Recent Posts
No posts yet.
Reservoir properties of Upper Triassic–Middle Jurassic sandstones, Spitsbergen, are studied as part of a CO2 storage pilot project in Longyearbyen. The reservoir formations show large contrasts in sandstone compositions, with unexpected low permeability despite moderate porosity values. Petrographic analyses were performed to investigate the influence and distribution of diagenesis. It is concluded that, because of various compaction, cementation, and dissolution processes, the sandstone porosity is mainly isolated molds and micropores and associated with fibrous illite and chamosite, explaining the low permeability. Diagenesis and the distribution of quartz cement is influenced by lithofacies and detrital compositions. Mineralogically immature sandstones (De Geerdalen Formation) show a homogeneous distribution of quartz cement overgrowths on quartz grains, distributed interstitial to labile grains and other cements (e.g., late calcite). The main silica source was from the dissolution of adjacent feldspar and labile grains as part of the chemical compaction. In contrast, quartz-dominated sandstones (Knorringfjellet Formation) show a heterogeneous patchy distribution of quartz cement influenced by the sedimentary bioturbation pattern, with silica sourced also from dissolution at clay-rich microstylolites. Phosphatic beds at the base and top of the formation are strongly influenced by marine eogenesis and reworking processes and associated with concentration of iron-rich authigenic minerals. The highest porosity appears in sand-supported conglomerate where moldic clay-mineral ooids contributed to reduce quartz cementation. The stratigraphic change from mineralogical immature (Triassic) to mature (uppermost Triassic–Jurassic) sandstone compositions is detected in wide areas of the Barents Shelf and has considerable implications for the distribution of sandstone reservoir properties.
Desktop /Portals/0/PackFlashItemImages/WebReady/diagenesis-and-quartz-cement-distribution.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3713

Estimation of the dimensions of fluvial geobodies from core data is a notoriously difficult problem in reservoir modeling. To try and improve such estimates and, hence, reduce uncertainty in geomodels, data on dunes, unit bars, cross-bar channels, and compound bars and their associated deposits are presented herein from the sand-bed braided South Saskatchewan River, Canada. These data are used to test models that relate the scale of the formative bed forms to the dimensions of the preserved deposits and, therefore, provide an insight as to how such deposits may be preserved over geologic time. The preservation of bed-form geometry is quantified by comparing the alluvial architecture above and below the maximum erosion depth of the modern channel deposits. This comparison shows that there is no significant difference in the mean set thickness of dune cross-strata above and below the basal erosion surface of the contemporary channel, thus suggesting that dimensional relationships between dune deposits and the formative bed-form dimensions are likely to be valid from both recent and older deposits.

The data show that estimates of mean bankfull flow depth derived from dune, unit bar, and cross-bar channel deposits are all very similar. Thus, the use of all these metrics together can provide a useful check that all components and scales of the alluvial architecture have been identified correctly when building reservoir models. The data also highlight several practical issues with identifying and applying data relating to cross-strata. For example, the deposits of unit bars were found to be severely truncated in length and width, with only approximately 10% of the mean bar-form length remaining, and thus making identification in section difficult. For similar reasons, the deposits of compound bars were found to be especially difficult to recognize, and hence, estimates of channel depth based on this method may be problematic. Where only core data are available (i.e., no outcrop data exist), formative flow depths are suggested to be best reconstructed using cross-strata formed by dunes. However, theoretical relationships between the distribution of set thicknesses and formative dune height are found to result in slight overestimates of the latter and, hence, mean bankfull flow depths derived from these measurements.

This article illustrates that the preservation of fluvial cross-strata and, thus, the paleohydraulic inferences that can be drawn from them, are a function of the ratio of the size and migration rate of bed forms and the time scale of aggradation and channel migration. These factors must thus be considered when deciding on appropriate length:thickness ratios for the purposes of object-based modeling in reservoir characterization.

Desktop /Portals/0/PackFlashItemImages/WebReady/deposits-of-the-sandy-braided-saskatchewan-river.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3712
Desktop /Portals/0/PackFlashItemImages/WebReady/ready-or-not-changes-will-keep-coming-fig1.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2297

It don’t come easy: The oil rich Monterey Shale has proved to be the biggest conventional resource provider in California, and it promises even more – but the formation’s complex geology is just as intimidating as its potential is huge.

Desktop /Portals/0/PackFlashItemImages/WebReady/monterey-shale-continues-to-tempt-and-tease-2013-02feb-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2287
This study documents that Danian-aged sand remobilization of deep-water slope-channel complexes and intrusion of fluidized sand into hydraulically fractured slope mudstones of the Great Valley sequence, California, generated 400-m (1312 ft)–thick reservoir units: unit 1, parent unit channel complexes for shallower sandstone intrusions; unit 2, a moderate net-to-gross interval (0.19 sand) of sills with staggered, stepped, and multilayer geometries with well-developed lateral sandstone-body connectivity; unit 3, a low net-to-gross interval (0.08 sand) of exclusively high-angle dikes with good vertical connectivity; and unit 4, an interval of extrusive sandstone. Unit 2 was formed during a phase of fluidization that emplaced on an average 0.19 km3 (0.046 mi3) of sand per cubic kilometer of host sediment. Probe permeametry data reveal a positive relationship between sill thickness and permeability. Reservoir quality is reduced by the presence of fragments of host strata, such as the incorporation of large rafts of mudstone, which are formed by in-situ hydraulic fracturing during sand injection. Mudstone clasts and clay- and silt-size particles generated by intrusion-induced abrasion of the host strata reduce sandstone permeability in multilayer sills (70 md) when compared to that in staggered and stepped sills (586 and 1225 md, respectively). Post-injection cementation greatly reduces permeability in high-angle dikes (81 md). This architecturally based reservoir zonation and trends in reservoir characteristics in dikes and sills form a basis for quantitative reservoir modeling and can be used to support conceptual interpretations that infer injectite architecture in situations where sands in low net-to-gross intervals are anticipated to have well-developed lateral and vertical connectivity.
Desktop /Portals/0/PackFlashItemImages/WebReady/outcrop-based-reservoir-characterization-of-a-kilometer-scale-sand-injectite-complex.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3666

A series of short and steep unidirectionally migrating deep-water channels, which are typically without levees and migrate progressively northeastward, are identified in the Baiyun depression, Pearl River Mouth Basin. Using three-dimensional seismic and well data, the current study documents their morphology, internal architecture, and depositional history, and discusses the distribution and depositional controls on the bottom current–reworked sands within these channels.

Unidirectionally migrating deep-water channels consist of different channel-complex sets (CCSs) that are, overall, short and steep, and their northeastern walls are, overall, steeper than their southwestern counterparts. Within each CCS, bottom current–reworked sands in the lower part grade upward into muddy slumps and debris-flow deposits and, finally, into shale drapes.

Three stages of CCSs development are recognized: (1) the early lowstand incision stage, during which intense gravity and/or turbidity flows versus relatively weak along-slope bottom currents of the North Pacific intermediate water (NPIW-BCs) resulted in basal erosional bounding surfaces and limited bottom current–reworked sands; (2) the late lowstand lateral-migration and active-fill stage, with gradual CCS widening and progressively northeastward migration, characterized by reworking of gravity- and/or turbidity-flow deposits by vigorous NPIW-BCs and the CCSs being mainly filled by bottom current–reworked sands and limited slumps and debris-flow deposits; and (3) the transgression abandonment stage, characterized by the termination of the gravity and/or turbidity flows and the CCSs being widely draped by marine shales. These three stages repeated through time, leading to the generation of unidirectionally migrating deep-water channels.

The distribution of the bottom current–reworked sands varies both spatially and temporally. Spatially, these sands mainly accumulate along the axis of the unidirectionally migrating deep-water channels and are preferentially deposited to the side toward which the channels migrated. Temporally, these sands mainly accumulated during the late lowstand lateral-migration and active-fill stage.

The bottom current–reworked sands developed under the combined action of gravity and/or turbidity flows and along-slope bottom currents of NPIW-BCs. Other factors, including relative sea level fluctuations, sediment supply, and slope configurations, also affected the formation and distribution of these sands. The proposed distribution pattern of the bottom current–reworked sands has practical implications for predicting reservoir occurrence and distribution in bottom current–related channels.

Desktop /Portals/0/PackFlashItemImages/WebReady/upper-miocene-to-quaternary.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3665
This article concentrates on the question, Which parameters govern recovery factor (RF) behavior in channelized turbidite reservoirs? The objective is to provide guidelines for the static and dynamic modeling of coarse reservoir-scale models by providing a ranking of the investigated geologic and reservoir engineering parameters based on their relative impact on RF. Once high-importance (H) parameters are understood, then one can incorporate them into static and dynamic models by placing them explicitly into the geologic model. Alternatively, one can choose to represent their effects using effective properties (e.g., pseudorelative permeabilities). More than 1700 flow simulations were performed on geologically realistic three-dimensional sector models at outcrop-scale resolution. Waterflooding, gas injection, and depletion scenarios were simulated for each geologic realization. Geologic and reservoir engineering parameters are grouped based on their impact on RF into H, intermediate-importance (M), and low-importance (L) categories. The results show that, in turbidite channel reservoirs, dynamic performance is governed by architectural parameters such as channel width, net-to-gross, and degree of amalgamation, and parameters that describe the distribution of shale drapes, particularly along the base of channel elements. The conclusions of our study are restricted to light oils and relatively high-permeability channelized turbidite reservoirs. The knowledge developed in our extensive simulation study enables the development of a geologically consistent and efficient dynamic modeling approach. We briefly describe a methodology for generating effective properties at multiple geologic scales, incorporating the effect of channel architecture and reservoir connectivity into fast simulation models.
Desktop /Portals/0/PackFlashItemImages/WebReady/the-impact-of-fine-scale-turbidite-channel-architecture.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3664

Some bold and creative geologists, full of the entrepreneur spirit, helped turn the Falkland Islands into a success story.

Desktop /Portals/0/PackFlashItemImages/WebReady/entrepeneurs-finished-the-falklands-story-2012-12dec-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2210

This month’s column deals with seismic waveforms and facies classification.

Desktop /Portals/0/PackFlashItemImages/WebReady/waveform-classification-proves-itself-a-valuable-tool-2012-11nov-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2116

Closest of trends: Geoscientists experienced a huge “aha!” moment that started with the realization that Pennsylvania’s Marcellus Shale and Texas’ Eagle Ford Shale have a lot in common.

Desktop /Portals/0/PackFlashItemImages/WebReady/eagle-ford-meet-marcellus-2012-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2032
«« First |1 2 3 4 5 6 7 ... 10 11 12 13 14 15 16 ... 17 18 19 20 21 22 23 | Last ››
In-Person Training
Columbia South Carolina United States 31 May, 2016 07 June, 2016 13368 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-Modern-Terrigenous-Clastic-Depositional-Systems.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Clastics, Marine, Regressive Deposits, High Stand Deposits, Low Stand Deposits
Columbia, South Carolina, United States
31 May - 7 June 2016

This field seminar offers an excellent opportunity for the students to walk on a variety of modern terrigenous clastic depositional systems while observing sedimentary processes, modern sedimentary structures, and numerous trenches illuminating the three-dimensional architecture of each area.

Palo Alto California United States 13 June, 2016 18 June, 2016 46 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-Deep-Water Siliciclastic Reservoirs-California.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Clastics, Sedimentology and Stratigraphy, Deep Sea / Deepwater
Palo Alto, California, United States
13-18 June 2016

This six-day field seminar is designed to provide participants with an appreciation of the broad range of deep-water reservoir facies, the mechanisms by which they were deposited, their predictive attributes, their reservoir heterogeneity and their stratigraphic architecture.

Calgary Alberta Canada 23 June, 2016 24 June, 2016 23964 Desktop /Portals/0/PackFlashItemImages/WebReady/ACE-2016-FT-08-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Field Trips, Conventions, Post-Convention, Sedimentology and Stratigraphy, Clastics, Fluvial Deltaic Systems, Marine
Calgary, Alberta, Canada
23-24 June 2016

The Campanian, Horseshoe Canyon Formation is exposed in three-dimensions along the Red Deer Valley near Drumheller, Alberta. These clastic marginal marine sediments were deposited in mixed-process (wave, tide and fluvial influenced) depositional environments. These deposits are subdivided into six relatively thin (10 m on average; low accommodation) Transgressive-Regressive sequences (A to F). Participants will be able to compare and contrast outcrop observations with wireline and core data and also visualize the seismic expression of the outcrops. These data will be utilized to explain the 3-D evolution of the deposystems through time.

Calgary Alberta Canada 23 June, 2016 23 June, 2016 23966 Desktop /Portals/0/PackFlashItemImages/WebReady/Field Trip 10 - CSPG Dinosaur Palaeobiology and Preservation in Cretaceous Fluvial Reservoir Analogues of Dinosaur Provincial Park.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Member, Field Trips, Conventions, Post-Convention, Clastics, Sedimentology and Stratigraphy, Fluvial Deltaic Systems
Calgary, Alberta, Canada
23 June 2016

Participants will spend the day hiking in the picturesque badlands of the Natural Preserve in Dinosaur Provincial Park, a UNESCO World Heritage Site. They will be accompanied by a Dinosaur expert, Caleb Brown, from the world renowned Royal Tyrrell Museum, and by an experienced sedimentologist from the industry. The Park’s status is due to a combination of its diverse fossil resources, large area of badlands and the cottonwood riparian biozone of the Red Deer River.

Calgary Alberta Canada 24 June, 2016 26 June, 2016 23972 Desktop /Portals/0/PackFlashItemImages/WebReady/Field Trip 13 - CSPG The Mid-Paleozoic Exshaw.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Field Trips, Conventions, Post-Convention, Sedimentology and Stratigraphy, Clastics, Conventional Sandstones, Carbonates, Dolostones
Calgary, Alberta, Canada
24-26 June 2016

This trip is designed to examine the components of one of these unconventional systems, the Bakken-equivalent Exshaw and lower Banff of the southern Alberta Rockies. The latest Devonian to earliest Mississippian Exshaw Formation and overlying black shale of the lower Banff Formation provide an opportunity to see a coeval outcrop analogue of the Bakken petroleum system in the Williston Basin.

Calgary Alberta Canada 25 June, 2016 26 June, 2016 23974 Desktop /Portals/0/PackFlashItemImages/WebReady/ACE-2016-FT-15-hero.JPG?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Field Trips, Conventions, Post-Convention, Carbonates, Sedimentology and Stratigraphy, Dolostones, Clastics, Marine
Calgary, Alberta, Canada
25-26 June 2016

This field trip focuses on the Montney Formation in the Foothills and Front Ranges outcrop belt in the Alberta Rockies immediately west of Calgary and provides a review of facies patterns in a variety of proximal and distal basinal settings.

Lagos Nigeria 11 July, 2016 13 July, 2016 21922 Desktop /Portals/0/PackFlashItemImages/WebReady/sequence-stratigraphy-concepts-principles-applications-clastic-depositional-environments-02feb-2016-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Reservoir Characterization, Geochemistry and Basin Modeling, Source Rock, Petrophysics and Well Logs, Sedimentology and Stratigraphy, Clastics, Conventional Sandstones, Deep Sea / Deepwater, Deepwater Turbidites, Eolian Sandstones, Estuarine Deposits, Fluvial Deltaic Systems, High Stand Deposits, Incised Valley Deposits, Lacustrine Deposits, Low Stand Deposits, Marine, Regressive Deposits, Sheet Sand Deposits, Shelf Sand Deposits, Slope, Transgressive Deposits, Sequence Stratigraphy, Deep Basin Gas, Diagenetic Traps, Stratigraphic Traps, Structural Traps
Lagos, Nigeria
11-13 July 2016
Sequence stratigraphy provides a framework for the integration of geological, geophysical, biostratigraphic and engineering data, with the aim of predicting the distribution of reservoir, source rock and seal lithologies. It gives the geoscientist a powerful predictive tool for regional basin analysis, shelf-to-basin correlation, and characterization of reservoir heterogeneity. This course will examine the underlying geological principles, processes and terminology related to sequence stratigraphic interpretation. The strength of this course is the application of these basic principles to subsurface datasets in a series of well-founded exercises.
Casper Wyoming United States 22 August, 2016 26 August, 2016 24361 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-Casper-Fracture-School.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Structure, Sedimentology and Stratigraphy, Geophysics, Engineering, Petrophysics and Well Logs, Geomechanics and Fracture Analysis, Clastics, Carbonates, Seismic, Reservoir Characterization, Fractured Carbonate Reservoirs
Casper, Wyoming, United States
22-26 August 2016

Take advantage of this unique opportunity to learn all the aspects related to the understanding and modeling of fractured reservoirs. Attendees will take geologic concepts and use them in reservoir modeling through hands-on sessions devoted to the examination of outcrop, core and log data. They will use that information and a software to create 3D fractured reservoir models. Using actual Teapot Dome (Wyoming, USA) field data from the Tensleep and Niobrara Shale formations and a hands-on approach, the workshop allows the geoscientist to identify fractures and to construct predictive 3D fracture models that can be used to identify productive zones, plan wells and to create fracture porosity and permeability models for reservoir simulation.

Columbia South Carolina United States 11 September, 2016 18 September, 2016 72 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-Modern-Terrigenous-Clastic-Depositional-Systems.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Clastics, Regressive Deposits, Marine, Low Stand Deposits, High Stand Deposits
Columbia, South Carolina, United States
11-18 September 2016

This field seminar offers an excellent opportunity for the students to walk on a variety of modern terrigenous clastic depositional systems while observing sedimentary processes, modern sedimentary structures, and numerous trenches illuminating the three-dimensional architecture of each area.

Salt Lake City Utah United States 18 September, 2016 25 September, 2016 151 Desktop /Portals/0/PackFlashItemImages/WebReady/FS-lacustrine-basin-exploration-2014.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Carbonates, Clastics, Lacustrine Deposits, Oil Shale, Geochemistry and Basin Modeling, Source Rock, Fluvial Deltaic Systems, Petrophysics and Well Logs, Geophysics, Seismic
Salt Lake City, Utah, United States
18-25 September 2016

Participants will learn a specific and comprehensive methodology for finding and developing conventional and unconventional oil and gas resources associated with lake deposits. The seminar will start with the Quaternary Bonneville basin in Utah, to build familiarity with lacustrine depositional processes. Participants then examine world-famous exposures of organic-rich mudstone, fluvial sandstone, and carbonate microbialite facies in Wyoming.

Grand Junction Colorado United States 28 September, 2016 05 October, 2016 86 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-sedimentology-and-sequence-stratigraphic-response-of-paralic-deposits.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Sedimentology and Stratigraphy, Clastics, Sequence Stratigraphy, Fluvial Deltaic Systems, Estuarine Deposits, Marine, Incised Valley Deposits, High Stand Deposits, Low Stand Deposits, Petrophysics and Well Logs
Grand Junction, Colorado, United States
28 September - 5 October 2016

Participants will learn through the use of spectacular outcrops, subsurface datasets, and stratigraphic modeling how these systems tracts and key surfaces (flooding surfaces and sequence boundaries) may be recognized.

Online Training
07 November, 2013 07 November, 2013 1500 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-from-qualitative-to-quantitative-interpretations.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
7 November 2013

This e-symposium presentation places the interpretation of deep-water turbidites discernible in 3-D seismic inversion data within a geological context.

13 December, 2012 13 December, 2012 1494 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-petrophysics-of-shales.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
13 December 2012

The course will review core data, petrophysical comparisons, rock physics modeling (including pseudo logs and mechanical properties).

01 January, 2013 01 January, 9999 1459 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-giant-oil-and-gas-fields.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
1 January 2013 - 1 January 9999

There are more approximately 1,000 oil and gas fields in the world that have been classified as "giant," containing more than 500 million barrels of recoverable oil and /or 3 trillion cubic feet of gas.

24 October, 2013 24 October, 2013 1499 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geomechanical-data-from-petrophysical-logs.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
24 October 2013

This e-symposium will be introducing signal processing techniques as a means to maximize extracting geomechanical data from petrophysical logs.

08 December, 2011 08 December, 2011 1480 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-connectivity-in-fluvial-systems.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
8 December 2011

This e-symposium focuses on methods for predicting connectivity within clastic fluvial systems.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

17 February, 2011 17 February, 2011 1469 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-siliclastic-sequence-stratigraphy.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
17 February 2011

This presentation is designed for exploration/production geologists and geological managers or reservoir engineers.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

29 April, 2010 29 April, 2010 1457 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-seismic-stratigraphy-seismic-geomorphology-of-deep-water.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
29 April 2010

This presentation will focus on the seismic stratigraphic and seismic geomorphologic expression of deep-water deposits, including both reservoir and non-reservoir facies.

22 October, 2009 22 October, 2009 1452 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-fluvial-stratigraphy.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
22 October 2009

This course can help you gain the ability to describe the complex and highly variable reservoirs, which are typified by complex internal heterogeneity.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!