Recent Posts
No posts yet.
 

The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system, thus creating a permeability bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates) above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems. Those exact distance numbers are subject to ongoing investigations.  

A plot of the pressure data versus elevation for a given formation is critical in determining whether an accumulation is conventional or unconventional. Conventional accumulations will have hydrocarbon columns of 10s to 100s of feet with the pressure in the hydrocarbons and that in the water equal at the bottom of the accumulation (at the HC-water contact). In contrast, the unconventional accumulations will show HC column heights of 1000s of feet with the pressure in the hydrocarbon phase and the water phase being the same at the top of the accumulation (at the updip transition zone). Those significant differences are critical for understanding and differentiating these two play types. Because the system is a pore throat bottleneck with very little or minimum lateral migration, the type of hydrocarbon s are closely tied to the thermal maturity required to generate those hydrocarbons. Thus the play concept begins with two important geochemical considerations: (1) where are the source rocks and what are the kerogen types and organic richness (TOC), and (2 ) where are they mature in the basin for oil, condensate, and gas in the basin. These parameters will very quickly define the fairway for the play. Then one has to add the critical information on the reservoirs themselves: composition (brittleness), thickness, and reservoir quality (matrix porosity and permeability). In summary, these tight unconventional petroleum systems (1) are dynamic , and (2) create a regionally inverted petroleum system with water over oil over condensate over gas for source rocks wit h Type I or II kerogen types.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/sd-Our-Current-Working-Model-for-Unconventional-Tight-Petroleum-Systems-Oil-and-Gas-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Our Current Working Model for Unconventional Tight Petroleum Systems: Oil and Gas
 
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-integrated-seismic-and-well-log-analysis-of-gas-hydrate-prospects-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Integrated Seismic and Well Log Analysis of Gas Hydrate Prospects
 
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-arctic-and-marine-gas-hydrate-production-testing-lessons-learnedp-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Arctic and Marine Gas Hydrate Production Testing – Lessons Learned
 
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-gas-hydrate-petroleum-system-analysis-in-marine-and-arctic-permafrost-environments-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Gas Hydrate Petroleum System Analysis in Marine and Arctic Permafrost Environments
 
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-indian-national-gas-hydrate-program-expedition-02-technical-contributions-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Indian National Gas Hydrate Program Expedition 02 Technical Contributions
 
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-assessment-forecasting-and-decision-making-in-unconventional-resource-plays.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Fundamentals of Basin Evaluation and Quantitative Prospect Assessment (Short Course)
 
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-abstract-north-atlantic-extension-and-break-up-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true North Atlantic extension and break-up: challenges, controversies and implications
 

The Arctic Ocean occupies a unique tectonic setting as a small, confined ocean between two much larger oceans - the subducting Pacific margin and the opening North Atlantic. Unlike many of the world's oceans, evidence on both timing and geometry is poor, and major elements of the plate tectonic evolution are still "up for grabs". The Arctic has experienced significant plate motion from Cretaceous to present, and because of the ambiguities in the oceanic signature, resolving the most likely kinematic history is critical in understanding paleogeography and hence reservoir and source distribution. I will show a 3-stage kinematic model which, while not a unique solution, seems to best satisfy the known constraints.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-abstract-The-Arctic-a-tectonic-tour-through-the-last-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true The Arctic – a tectonic tour through the last great petroleum frontier
 

The search for unconventional hydrocarbons is not new. It’s true that almost 100 years separated the early exploration successes in the synclinal valleys of Central Pennsylvania, to the exploitation of Coal-Bed Methane in a number of basins in the U.S. and Canada in the 1980’s. Since the 1980's, however, a quiet revolution began which by today has seen several waves of unconventional resources being pursued with economic success. Coal-bed methane was followed by the search for Center-Basin Gas, Shale Gas and most recently, Liquid-rich Shales (some of which aren't shales).

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-2015-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true The Similarities and Differences in the Hunt for Unconventional and Conventional Hydrocarbons
 
The past 30+ years have witnessed a wide variety of exploration strategies and a number of technological “revolutions” in the search for oil and gas. Although the exploration landscape and tools of the trade are so different than they were in the early 1980’s, in one aspect we appear to have come full circle, realizing that a deep understanding of our basins is the critical element in any success.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-2015-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Play-Based Exploration: Applying Depth and Breadth of Geoscience Understanding.
«« First « Previous |1 2 3 | Last ››
In-Person Training
Marrakech Morocco 01 November, 2017 04 November, 2017 37903 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Development and Operations, Production, Infill Drilling, Geochemistry and Basin Modeling, Petroleum Systems, Source Rock, Thermal History, Geophysics, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Sequence Stratigraphy, Structure, Compressional Systems, Extensional Systems, Tectonics (General), Deep Basin Gas, Stratigraphic Traps, Structural Traps
 
Marrakech, Morocco
1-4 November 2017

This workshop provides the opportunity to learn and discuss the latest knowledge, techniques & technologies applied to petroleum reservoirs in the Paleozoic of North Africa which can be utilized to explore for and develop these reservoirs. The workshop will provide a set-up for networking, interacting & sharing expertise with fellow petroleum scientists interested in developing and producing hydrocarbon resources within the Paleozoic of North Africa.

Marrakech Morocco 03 November, 2017 04 November, 2017 41272 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Engineering, Compressional Systems, Tectonics (General), Extensional Systems, Source Rock, Petroleum Systems, Thermal History, Sequence Stratigraphy, Clastics, Development and Operations, Production, Structural Traps, Deep Basin Gas, Stratigraphic Traps, Conventional Sandstones, Infill Drilling
 
Marrakech, Morocco
3-4 November 2017

Location: Atlas; Anti-Atlas of Marrakech and Ouarzazate areas of Morocco**
Field Trip Leader: Abdallah Aitsalem (ONHYM) & Lahcen Boutib (ONHYM)
Field Trip Fee: USD575 *

* Field trip pricing covers accommodation, feeding and transportation for the duration of the Trip. Seats are limited and will be confirmed on a first come first served basis.

Day 1 Departure from Marrakech to Ouarzazate

The Atlas Mountains of Marrakech extend more than 250 km East-West and 50 km North-South. They record the highest mountainous peaks in North Africa with altitudes exceeding 4,000 meters (Toubkal 4,165m and Ouenkrim 4,089m). Northward and southward, they rise hundreds of meters above the Marrakech plain (Haouz plain) and Imini syncline, respectively. The recently incised mountain valleys, created during the last inversion of the Atlas, form the crossing ways of the massif, as is the case of the main road that connects Marrakech to Ouarzazate passing via the Tizi n'Tichka Pass. They also provide the opportunity to view multiple breathtaking landscapes and contain outcrops that shed light on the geological evolution of the mountain from the Precambrian to the present. Day 1 of the field trip will allow participants to view Paleozoic outcrops through the Tizi n'Tichka Pass, which displays a complete Cambrian to Devonian succession and contains several organic-rich intervals. Mesozoic and Cenozoic deposits, which are exposed on the borders of the massif, will also be viewed briefly.

Day 2: Departure from Ouarzazate to Tazzarine and back to Ouarzazate **

Day 2 of the field trip crosses the central Anti-Atlas Paleozoic basin and offers spectacular views of the largest oasis in North Africa, along the Draa River, and its majestic ancient Kasbahs. Participants will examine formations ranging in age from Upper Precambrian to Silurian. Discussions will focus on the evolution of their various depositional environments in relation to sea level changes. The well exposed sandstone formations provide the opportunity to view major Paleozoic reservoirsintervals, as well as the organic-rich "hot shales" that source these reservoirs. Rubble from recent water wells and ingenious sub-cropping irrigation systems (Khattara) provide the chance to sample fresh Ordovician and Silurian organic-rich and fossiliferous black shales. In addition, the participants will have perspective views of gentle folding generated during the Hercynian compression and related regional fractures.

Field trip route map
Field trip route map

**Field trip will end in Ouarzazate. All participants to arrange their own transport from Ouarzazate following the conclusion of the field trip.

To register for the field trip please click here.

Online Training
10 May, 2012 10 May, 2012 1486 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-genetic-sequences-in-eagle-ford-austin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
10 May 2012

Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
 
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Related Interests

See Also ...