Recent Posts
No posts yet.

The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system, thus creating a permeability bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates) above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems. Those exact distance numbers are subject to ongoing investigations.  

A plot of the pressure data versus elevation for a given formation is critical in determining whether an accumulation is conventional or unconventional. Conventional accumulations will have hydrocarbon columns of 10s to 100s of feet with the pressure in the hydrocarbons and that in the water equal at the bottom of the accumulation (at the HC-water contact). In contrast, the unconventional accumulations will show HC column heights of 1000s of feet with the pressure in the hydrocarbon phase and the water phase being the same at the top of the accumulation (at the updip transition zone). Those significant differences are critical for understanding and differentiating these two play types. Because the system is a pore throat bottleneck with very little or minimum lateral migration, the type of hydrocarbon s are closely tied to the thermal maturity required to generate those hydrocarbons. Thus the play concept begins with two important geochemical considerations: (1) where are the source rocks and what are the kerogen types and organic richness (TOC), and (2 ) where are they mature in the basin for oil, condensate, and gas in the basin. These parameters will very quickly define the fairway for the play. Then one has to add the critical information on the reservoirs themselves: composition (brittleness), thickness, and reservoir quality (matrix porosity and permeability). In summary, these tight unconventional petroleum systems (1) are dynamic , and (2) create a regionally inverted petroleum system with water over oil over condensate over gas for source rocks wit h Type I or II kerogen types.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/sd-Our-Current-Working-Model-for-Unconventional-Tight-Petroleum-Systems-Oil-and-Gas-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Our Current Working Model for Unconventional Tight Petroleum Systems: Oil and Gas
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-gas-hydrate-petroleum-system-analysis-in-marine-and-arctic-permafrost-environments-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Gas Hydrate Petroleum System Analysis in Marine and Arctic Permafrost Environments
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-arctic-and-marine-gas-hydrate-production-testing-lessons-learnedp-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Arctic and Marine Gas Hydrate Production Testing – Lessons Learned
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-integrated-seismic-and-well-log-analysis-of-gas-hydrate-prospects-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Integrated Seismic and Well Log Analysis of Gas Hydrate Prospects
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-indian-national-gas-hydrate-program-expedition-02-technical-contributions-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Indian National Gas Hydrate Program Expedition 02 Technical Contributions

The search for unconventional hydrocarbons is not new. It’s true that almost 100 years separated the early exploration successes in the synclinal valleys of Central Pennsylvania, to the exploitation of Coal-Bed Methane in a number of basins in the U.S. and Canada in the 1980’s. Since the 1980's, however, a quiet revolution began which by today has seen several waves of unconventional resources being pursued with economic success. Coal-bed methane was followed by the search for Center-Basin Gas, Shale Gas and most recently, Liquid-rich Shales (some of which aren't shales).

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-2015-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true The Similarities and Differences in the Hunt for Unconventional and Conventional Hydrocarbons
Desktop /Portals/0/PackFlashItemImages/WebReady/hero-assessment-forecasting-and-decision-making-in-unconventional-resource-plays.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Fundamentals of Basin Evaluation and Quantitative Prospect Assessment (Short Course)

The Arctic Ocean occupies a unique tectonic setting as a small, confined ocean between two much larger oceans - the subducting Pacific margin and the opening North Atlantic. Unlike many of the world's oceans, evidence on both timing and geometry is poor, and major elements of the plate tectonic evolution are still "up for grabs". The Arctic has experienced significant plate motion from Cretaceous to present, and because of the ambiguities in the oceanic signature, resolving the most likely kinematic history is critical in understanding paleogeography and hence reservoir and source distribution. I will show a 3-stage kinematic model which, while not a unique solution, seems to best satisfy the known constraints.

Show more American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-abstract-The-Arctic-a-tectonic-tour-through-the-last-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true The Arctic – a tectonic tour through the last great petroleum frontier
The past 30+ years have witnessed a wide variety of exploration strategies and a number of technological “revolutions” in the search for oil and gas. Although the exploration landscape and tools of the trade are so different than they were in the early 1980’s, in one aspect we appear to have come full circle, realizing that a deep understanding of our basins is the critical element in any success.
American Association of Petroleum Geologists (AAPG)
Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-2015-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Play-Based Exploration: Applying Depth and Breadth of Geoscience Understanding.
Desktop /Portals/0/PackFlashItemImages/WebReady/dl-abstract-north-atlantic-extension-and-break-up-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true North Atlantic extension and break-up: challenges, controversies and implications
«« First « Previous |1 2 3 | Last ››
In-Person Training
Cape Town Western Cape South Africa 20 June, 2017 23 June, 2017 38348 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-ar-exploration-and-development-of-unconventional-hydrocarbon-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Alternative Resources, Coal, Business and Economics, Economics, Resource Estimates, Risk Analysis, Engineering, Development and Operations, Conventional Drilling, Infill Drilling, Drive Mechanisms, Production, Depletion Drive, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Gas Injection, Water Flooding, Tertiary Recovery, Chemical Flooding Processes, Miscible Recovery, Thermal Recovery Processes, Reservoir Characterization, Environmental, Ground Water, Monitoring, Natural Resources, Pollution, Water Resources, Geochemistry and Basin Modeling, Basin Modeling, Maturation, Migration, Oil and Gas Analysis, Oil Seeps, Petroleum Systems, Source Rock, Thermal History, Oil Shale
Cape Town, Western Cape, South Africa
20-23 June 2017

This workshop provides the opportunity to learn and discuss the latest knowledge, techniques & technologies applied to unconventional reservoirs which can be utilized to explore for and develop these reservoirs. The workshop will provide a set-up for networking, interacting & sharing expertise with fellow petroleum scientists interested in developing and producing unconventional hydrocarbon resources.

Cape Town Western Cape South Africa 22 June, 2017 23 June, 2017 38474 Desktop /Portals/0/PackFlashItemImages/WebReady/fs-the-karoo-basin-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Alternative Resources, Geochemistry and Basin Modeling, Business and Economics, Engineering, Environmental, Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Resource Estimates, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Oil Shale, Coal, Conventional Drilling, Infill Drilling, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Drive Mechanisms, Depletion Drive, Ground Water, Water Resources, Monitoring, Pollution, Natural Resources
Cape Town, Western Cape, South Africa
22-23 June 2017

Led by De Ville Wickens (Geo-Routes Petroleum, Cape Town) and Doug Cole (Council for Geoscience, Bellville)

Participants of this field excursion will be introduced to the stratigraphy of the southwestern Karoo Basin by visiting the prime outcrop areas of the Dwyka and Ecca Groups in the Laingsburg and Tanqua Karoo regions. The southwestern Karoo Basin hosts a considerable amount of information on glaciogenic, deep-water and deltaic sedimentation with present day erosion allowing 3D-viewing of laterally continuous (tens of kilometres) outcrops. The Ecca Group in these areas, for example, hosts the world's best examples of deep-water basin floor to slope fan complexes, making it the most sought after “open air laboratory” for studying fine-grained deep-water sedimentation.

The objective of this field trip is to gain a better understanding of the tectono-sedimentary history and stratigraphic evolution of southwestern part of the Karoo Basin, basic depositional processes, facies development, controls on sedimentation patterns and post-depositional diagenetic and structural changes. It further aims to integrate different scales of observation and interpretation, namely the basin (exploration) and the development and production scale (facies distribution and bed-scale stratigraphy). This two-day field trip will focus on show-casing the glaciogenic Dwyka Group, and the Prince Albert and Whitehill Formations of the Ecca Group, which are main targets for shale gas development in South Africa.

Marrakech Morocco 01 November, 2017 04 November, 2017 37903 Desktop /Portals/0/PackFlashItemImages/WebReady/gtw-afr-the-paleozoic-hydrocarbon-potential-of-north-africa-past-lessons-and-future-potential-2017-17apr17-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true Engineering, Development and Operations, Production, Infill Drilling, Geochemistry and Basin Modeling, Petroleum Systems, Source Rock, Thermal History, Geophysics, Clastics, Sedimentology and Stratigraphy, Conventional Sandstones, Sequence Stratigraphy, Structure, Compressional Systems, Extensional Systems, Tectonics (General), Deep Basin Gas, Stratigraphic Traps, Structural Traps
Marrakech, Morocco
1-4 November 2017

This workshop provides the opportunity to learn and discuss the latest knowledge, techniques & technologies applied to petroleum reservoirs in the Paleozoic of North Africa which can be utilized to explore for and develop these reservoirs. The workshop will provide a set-up for networking, interacting & sharing expertise with fellow petroleum scientists interested in developing and producing hydrocarbon resources within the Paleozoic of North Africa.

Online Training
10 May, 2012 10 May, 2012 1486 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-genetic-sequences-in-eagle-ford-austin.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
10 May 2012

Recognition and Correlation of the Eagle Ford, Austin Formations in South Texas can be enhanced with High Resolution Biostratigraphy, fossil abundance peaks and Maximum Flooding Surfaces correlated to Upper Cretaceous sequence stratigraphic cycle chart after Gradstein, 2010.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

Thermal History

Thermal History
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!

Related Interests

See Also ...