Coming Soon!
Recent Posts
No posts yet.
Jurassic deposition in the Maghrebian tethys was governed by eustasy and rifting. Two periods were delineated: (1) a carbonate shelf (Rhaetian–early Pliensbachian) and (2) a platform-basin complex (early Pliensbachian–Callovian). The carbonate shelf evolved in four stages, generating three sedimentary sequences, J1 to J3, separated by boundary sea level falls, drawdown, exposure, and local erosion. Sediment facies bear evidence of sea level rises and falls. Lateral changes in lithofacies indicate shoaling and deepening upward during the Sinemurian. A major pulse of rifting with an abrupt transition from carbonate shelf to pelagic basin environments of deposition marks the upper boundary of the lower Pliensbachian carbonate shelf deposits. This rifting episode with brittle fractures broke up the Rhaetian–early Pliensbachian carbonate shelf and has created a network of grabens, half grabens, horsts, and stacked ramps. Following this episode, a relative sea level rise led to pelagic sedimentation in the rift basins with local anoxic environments that also received debris shed from uplifted ramp crests. Another major episode spanning the whole early Pliensbachian–Bajocian is suggested by early brecciation, mass flows, slumps, olistolites, erosion, pinch-outs, and sedimentary prisms. A later increase in the rates of drifting marked a progress toward rift cessation during the Late Jurassic. These Jurassic carbonates with detrital deposits and black shales as the source rocks in northeastern Tunisia may define interesting petroleum plays (pinch-out flanking ramps, onlaps, and structurally upraised blocks sealed inside grabens). Source rock maturation and hydrocarbon migration began early in the Cretaceous and reached a maximum during the late Tortonian–Pliocene Atlassic orogeny.
Show more
Desktop /Portals/0/PackFlashItemImages/WebReady/a-transition-from-carbonate-shelf-to-pelagic.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Desktop /Portals/0/PackFlashItemImages/WebReady/diverse-dynamics-impact-bakken-productivity-2013-06jun-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

A recent study has been completed comparing North American and European shale gas and oil resource systems.

Desktop /Portals/0/PackFlashItemImages/WebReady/Explorer-Cover-2013-04apr-thumb.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

Look again: The Bakken shale play is so big the U.S. Geological Survey has made a new assessment of the formation to see what has changed since the last assessment in 2008.

Desktop /Portals/0/PackFlashItemImages/WebReady/new-usgs-bakken-assessment-on-its-way-fig1.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

The Marcellus Formation of Pennsylvania represents an outstanding example of an organic matter (OM)–hosted pore system; most pores detectable by field-emission scanning electron microscopy (FE-SEM) are associated with OM instead of mineral matrix. In the two wells studied here, total organic carbon (TOC) content is a stronger control on OM-hosted porosity than is thermal maturity. The two study wells span a maturity from late wet gas (vitrinite reflectance [Ro], sim1.0%) to dry gas (Ro, sim2.1%). Samples with a TOC less than 5.5 wt. % display a positive correlation between TOC and porosity, but samples with a TOC greater than 5.5 wt. % display little or no increase in porosity with a further increasing TOC. In a subset of samples (14) across a range of TOC (2.3–13.6 wt. %), the pore volume detectable by FE-SEM is a small fraction of total porosity, ranging from 2 to 32% of the helium porosity. Importantly, the FE-SEM–visible porosity in OM decreases significantly with increasing TOC, diminishing from 30% of OM volume to less than 1% of OM volume across the range of TOC. The morphology and size of OM-hosted pores also vary systematically with TOC.

The interpretation of this anticorrelation between OM content and SEM-visible pores remains uncertain. Samples with the lowest OM porosity (higher TOC) may represent gas expulsion (pore collapse) that was more complete as a consequence of greater OM connectivity and framework compaction, whereas samples with higher OM porosity (lower TOC) correspond to rigid mineral frameworks that inhibited compactional expulsion of methane-filled bubbles. Alternatively, higher TOC samples may contain OM (low initial hydrogen index, relatively unreactive) that is less prone to development of FE-SEM–detectable pores. In this interpretation, OM type, controlled by sequence-stratigraphic position, is a factor in determining pore-size distribution.

Show more
Desktop /Portals/0/PackFlashItemImages/WebReady/organic-matter–hosted-pore-system.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

After World War II – possibly as part of the Marshall Plan – Shell was obliged to give an American company a half interest in the acreage it held in Netherlands.

Desktop /Portals/0/PackFlashItemImages/WebReady/insistence-proved-unwanted-block-a-winner-208-01jan-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

Globe trotting: A small independent company based in Denver is proving you don’t have to be a super-sized mega-firm to succeed in the international arena.

Desktop /Portals/0/PackFlashItemImages/WebReady/global-shale-hunters-have-insights-to-share-2011-10oct-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true

Scientific knowledge about the origins of oil in the Gulf of Mexico Basin and the resulting impact on oil quality has evolved over a long period of time.

Desktop /Portals/0/PackFlashItemImages/WebReady/katz-barry.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Desktop /Portals/0/PackFlashItemImages/WebReady/study-indicates-scotia-fairway-potential-2011-07jul-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Desktop /Portals/0/PackFlashItemImages/WebReady/EXPLORER-cover-2011-04april-thumb.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
«« First |1 2 3 4 5 6 | Last ››

Online Training
02 December, 2014 02 December, 2014 11967 Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-multiscale-modeling-of-gas-transport-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
2 December 2014

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used.

28 April, 2011 28 April, 2011 1471 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-niobrara-petroleum-system-a-major-tight-resource-play.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
28 April 2011

The Niobrara Petroleum System of the U.S. Rocky Mountain Region is a major tight petroleum resource play.

11 November, 2010 11 November, 2010 1465 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-geochemical-evaluation-of-eagle-ford-group-source.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
11 November 2010

This e-symposium is ideal for geologists, geophysicists, engineers and other geoscientists who are involved in gas shale exploration and production.

29 October, 2009 29 October, 2009 1445 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-application-of-thermal-maturation.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
29 October 2009

Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.

16 August, 2011 16 August, 2011 1436 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-green-river-shales-geochemical-basin-study.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
16 August 2011

The geochemistry of formation fluids (water and hydrocarbon gases) in the Uinta Basin, Utah, is evaluated at the regional scale based on fluid sampling and compilation of past records.

01 January, 2013 01 January, 9999 1472 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-cc-introduction-to-shale-gas.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
1 January 2013 - 1 January 9999

This course introduces the learner to the fundamentals of shale gas, including current theories that explain its origin, and how to determine which reservoirs are commercially viable.

14 February, 3000 14 February, 3000 7817 Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-generic-hero.jpg?width=100&height=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true
Coming Soon

Check back often. "Find an Expert" feature is coming online soon!