Sparsely drilled

Scotian Basin Larger Than Gulf of Mexico

Scotian Basin map and data showing the resource potential of the six geographical zones for Play Fairway Analysis of the Scotian Basin.
Scotian Basin map and data showing the resource potential of the six geographical zones for Play Fairway Analysis of the Scotian Basin.

The Scotian Basin lies several hundred kilometers southwest of Newfoundland’s oil producing Grand Banks. Larger than the Gulf of Mexico’s oil and gas producing area, the basin is 200 kilometers wide, 800 kilometers long and 142,000 square kilometers in size. Water depths vary from less than 100 meters to 3,500 meters.

The area contains up to 16,000 meters of sediments.

Sparsely explored to date, the Scotian Margin has been tested by just 204 wells, comprising 127 exploration wells, 28 delineation wells and 49 production wells. Most were drilled between the 1970s-90s, on regional grids of low-fold, 2-D seismic data.

Surprisingly, the area boasts 24 significant discovery licenses, with an average exploration discovery rate of about 25 percent.

The first 3-D seismic surveys were acquired during the early 2000s, but huge areas of the basin have no 3-D seismic data coverage to date.

The study’s data base consisted of 70,000 kilometers of 2-D seismic data, 30,000 square kilometres of 3-D seismic data, and 20 key wells distributed across the basin. Some 7,300 kilometers of 2-D seismic trade data were reprocessed to modern-day standards.

A full biostratigraphic analysis was conducted, and, according to AAPG member Hamish Wilson, “We linked the key wells with what we call ‘bible’ seismic lines, creating for the first time an integrated sequence stratigraphic framework for the basin.”

Ten internally consistent sequence stratigraphic sequences were mapped geophysically across the basin.

Across the basin, investigators delineated the distribution of source rocks juxtaposed with reservoir rocks, and they mapped growth and strike slip fault systems, carbonate banks, deltaic systems, turbidites and authochonous salt.

Window Shopping

Wilson, program director of the PFA study, described how “forensic” geochemistry was used to unlock the story of the Lower Jurassic petroleum system in the southwest part of the Scotian Margin:

Fluid inclusion work in the deepwater Weymouth A-45 well and extensive bio-marker and isotopic analyses of sea floor oil seeps collected in piston cores suggest the syn-rift and early post-rift deposition of a Lower Jurassic source rock that’s currently expelling oil today.

“There’s a regional Lower Jurassic source rock system extending to Morocco,” Wilson said.

Oil generation in the Lower Jurassic occurred before the Deep Panuke reservoirs were sealed. In the eastern part of the Scotian Margin – where Deep Panuke will produce gas from Upper Jurassic Abenaki Formation carbonates – these same Lower Jurassic source rocks are over mature today.

The study suggests, however, that the mostly undrilled carbonate bank, extending southwest along the Scotian Margin, could be filled with oil sourced from Lower Jurassic rocks.

Investigators also analyzed the Scotian Basin’s proven source rocks – currently in the gas window today, these Upper Jurassic rocks sourced the gas in the Sable Sub-basin’s productive Jurassic and Cretaceous deltaic complexes. As the basin shallows toward its margins, these Upper Jurassic source rocks move into the oil window.

Evidence for the concept of an oil rim around the Sable Delta, Wilson said, is provided by the Panuke and Penobscot oil discoveries and shows in this area.

Comments (0)


What Can I Do?

Add Item

Enter Notes:
* You must be logged in to name and customize your collection.
Recommend Recommend
Printable Version Printable Version Email to a friend Email to a friend

See Also: Energy Policy Blog

Energy Policy Blog Crude oil and natural gas infrastructure problems, from gas pipeline explosions and oil spills to train derailments and fires, are in the news Oil and natural gas infrastructure challenges Oil and natural gas infrastructure challenges Desktop /Portals/0/PackFlashItemImages/WebReady/Oil-and-natural-gas-infrastructure-challenges-03mar-17-2015-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 16886

See Also: Explorer Emphasis

Explorer Emphasis Article A pre-salt play? Deep Plays in Angola Deep Plays in Angola Desktop /Portals/0/PackFlashItemImages/WebReady/deep-plays-in-angola-2011-01jan-hero.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 2031
Explorer Emphasis Article Thinking ahead of the bit ‘Sideways’ Takes An Ensemble ‘Sideways’ Takes An Ensemble Desktop /Portals/0/PackFlashItemImages/WebReady/Sideways-Takes-An-Ensemble.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 10355

See Also: Explorer Geophysical Corner

Explorer Geophysical Corner Essentials Why Do P-Wave Wipeout Zones Occur? Why Do P-Wave Wipeout Zones Occur? Desktop /Portals/0/PackFlashItemImages/WebReady/explorer-cover-2007-03mar.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 12518

See Also: Online Traditional Course

Online Traditional Course Strategic Decision-Making: Current Issues in the Oil Industry Strategic Decision-Making: Current Issues in the Oil Industry Desktop /Portals/0/PackFlashItemImages/WebReady/oc-toc-strategic-decision-making.jpg?width=100&h=100&mode=crop&anchor=middlecenter&quality=75amp;encoder=freeimage&progressive=true 3160