So Many Challenges – But So Many Choices

The previous three Geophysical Corner articles have focused on the spectral decomposition of seismic data, describing some of the methods and their applications.

This month we add another one on the same topic, showing the comparative performance of some of the methods commonly available in the interactive interpretation software packages.

Each of these methods has its own applicability and limitations, and the choice of a particular method also could depend on the end objective.


The most basic and perhaps the simplest method is the traditional Fourier transform method, also known as the short-window discrete Fourier transform (SWDFT) method.

As the name implies, when using a fixed time window the seismic data is transformed into the frequency domain, and the output spectral amplitudes and phase volumes are visualized at different frequencies.

The choice of the time window has a bearing on the frequency, temporal and spatial resolution of the output data. A shorter time window could result in a reduced frequency resolution on the output and vice-versa.

Figure 1a shows a comparison of stratal slices from the input seismic data volume from western Canada and the equivalent slices at 55 Hz from the SWDFT spectral decomposition method using a time window of 30 ms (figure 1b) and 60 ms (figure 1c). The stratal slices were chosen 24 ms below a marker seismic reflector close to 960 ms on seismic data processed with 5-D interpolation used to regularize offsets and azimuths.

The shape of time window also is important. Careful tapering (rounding the edges) avoids artifacts called the Gibbs phenomenon. The “smoothest” taper would be to use a truncated Gaussian window; this particular implementation of the SWDFT is named the Gabor transform, after its originator.

A common pitfall for the SWDFT is to use an analysis window that is smaller than the period of interest, such that Gibbs artifacts dominate the result. A fixed window will include more cycles of a higher frequency than of a lower frequency sinusoid, suggesting that one could design the window length to be proportional to the period.

This construct gives rise to the continuous wavelet transform (CWT).


In figure 1d we show a 55 Hz spectral magnitude display, using CWT equivalent to the previous stratal slices – and notice the superior definition of the channel morphology. If in turn, the window is a Gaussian whose standard deviation is the period being analyzed, we obtain (omitting a few key mathematical details) the S-transform. This choice avoids picking a window that is too small.

One can implement these transforms in two ways:

  • By simply cross correlating the seismic trace with a suite of complex band-limited wavelets.
  • By applying a suite of band pass filters to the data and then computing the square root of the energy under a sliding window.

In general, the S-transform yields better temporal resolution than the SWDWT, especially at higher frequencies (figure 1e).

By construction, the CWT and S-transforms produce lower temporal resolution at lower frequencies. The continuous wavelet packet-like transform (CWPT) method overcomes this limitation by dividing the window into sub-windows but keeping the same central frequency. This makes it somewhat flexible and in the process displays higher resolution.

This can be seen in figure 1f, where it resolves the channel morphology better than the SWDFT and the CWT displays in figures 1b, 1c and 1d.

In the CWT spectral decomposition method when the spectral magnitude display is sought at a given frequency – at, say, 55 Hz – it usually produces the averaged spectral amplitude response from the neighboring frequencies 50 Hz to 60 Hz. Time frequency continuous wavelet transform (TFCWT) spectral decomposition method overcomes this averaging by producing the desired spectral magnitude at the desired central frequency within the given time window.

In doing so, it results in producing a higher time-frequency resolution than the SWDFT or the CWT methods – notice this on the display in figure 1g. It is computationally intensive, and so takes longer to run.


The wide choice of algorithms can be quite confusing. As is often the case, no algorithm is always best.

If the objective is to measure the number of geologic cycles per unit time, we suggest stratal (i.e. proportional) slicing the seismic data between two picked horizons, and then applying the SWDFT with a window equal to the number of slices. In this case the cyclicity would be a geologic cyclicity, say of progradation and retrogradation along a shelf margin vs. a much quieter and lower “frequency” basinal area.

The algorithm that shows the most “geology” is not necessarily the best. Longer window algorithms like the SWDFT will often cause more vertical mixing of stratigraphy, providing images with “more channels” than a shorter window S transform.

While these channels exist in the data, they may be more properly associated with shallower or deeper horizons than the one being examined.

Conclusions

Different spectral decomposition methods provide an effective way of examining the seismic response of stratigraphic geologic features in terms of spectral components and so help in the interpretation. Each of the methods described above have their own advantages and limitations.

The user is expected to understand these characteristics of the methods before making their application.

We hope this article helps provide some insight into this aspect.

Comments (1)

TIP: Zoom in for a closer look
Did you know you can zoom into the graphic on this page? Some graphics merit a closer look and this is one of them. Use your mouse t zoom in for tha... Read more
3/1/2014 2:03 AM
Janet Brister

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Kurt Marfurt
AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Bulletin Article

The Sierra Diablo Mountains of west Texas contain world-class exposures of Lower Permian (Leonardian) platform carbonates. As such, these outcrops offer key insights into the products of carbonate deposition in the transitional icehouse to greenhouse setting of the early to middle Permian that are available in few other places. They also afford an excellent basis for examining how styles of facies and sequence development vary between inner and outer platform settings.

We collected detailed data on the facies composition and architecture of lower Leonardian high-frequency cycles and sequences from outcrops that provide more than 2 mi (3 km) of continuous exposure. We used these data to define facies stacking patterns along depositional dip across the platform in both low- and high-accommodation settings and to document how these patterns vary systematically among and within sequences.

Like icehouse and waning icehouse successions elsewhere, Leonardian platform deposits are highly cyclic; cycles dominantly comprise aggradational upward-shallowing facies successions that vary according to accommodation setting. Cycles stack into longer duration high-frequency sequences (HFSs) that exhibit systematic variations in facies and cycle architectures. Unlike cycles, HFSs can comprise symmetrical upward-shallowing or upward-deepening facies stacks. High-frequency sequences are not readily definable from one-dimensional stratigraphic sections but require dip-parallel two-dimensional sections and, in most cases, HFS boundaries are best defined in middle platform settings where facies contrast and offset are greatest. These studies demonstrate that HFSs are the dominant architectural element in many platform systems. As such, the lessons learned from these remarkable outcrops provide a sound basis for understanding and modeling carbonate facies architecture in other carbonate-platform successions, especially those of the middle to upper Permian.

Desktop /Portals/0/PackFlashItemImages/WebReady/outcrop-based-characterization-leonardian.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3661 Bulletin Article

See Also: DL Abstract

Hydrothermal alteration occurs when relatively high-pressure, high-temperature fluids flow up active faults and into permeable formations that underlie sealing shales, or other low permeability strata. This process can and commonly does occur at relatively shallow burial depths of less than a kilometer and in many cases less than 500 meters.

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11670 DL Abstract

See Also: Energy Policy Blog

As Arctic ice thins and retreats, growing commercial access–from cruise ships to oil and gas drilling–will increase the risk of an oil spill. A recent National Research Council report found that resources, technology, research, manpower, funding and logistics are inadequate to respond to an Arctic oil spill.

Desktop /Portals/0/PackFlashItemImages/WebReady/National-Academies-US-Inadequately-Prepared-for-an-Arctic-Oil-Spill-2014-04apr-30-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12896 Energy Policy Blog

See Also: Field Seminar

This four-day field trip will begin with a drive from Denver to Glenwood Springs and a road log describing the general geology along Interstate 70 (I-70), as well as an overview stop in Rifle to introduce the Wasatch and Green River systems. It will focus on two themes: observing the characteristics of a wide variety of sedimentary environments and comparing these with subsurface data.

Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-ft-08-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14687 Field Seminar

See Also: Online e Symposium

The goal of this e-symposium is to review the status of the Mexican upstream sector, and to provide a review of the most prolific and prospective areas in Mexico, with a focus on opportunities for international participation, given the upcoming energy reform in Mexico. 
Desktop /Portals/0/PackFlashItemImages/WebReady/esymp-mexicos-oil-and-gas-history-new-discoveries-opportunities-and-energy-reform-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 10831 Online e-Symposium