So Many Challenges – But So Many Choices

The previous three Geophysical Corner articles have focused on the spectral decomposition of seismic data, describing some of the methods and their applications.

This month we add another one on the same topic, showing the comparative performance of some of the methods commonly available in the interactive interpretation software packages.

Each of these methods has its own applicability and limitations, and the choice of a particular method also could depend on the end objective.

The most basic and perhaps the simplest method is the traditional Fourier transform method, also known as the short-window discrete Fourier transform (SWDFT) method.

As the name implies, when using a fixed time window the seismic data is transformed into the frequency domain, and the output spectral amplitudes and phase volumes are visualized at different frequencies.

The choice of the time window has a bearing on the frequency, temporal and spatial resolution of the output data. A shorter time window could result in a reduced frequency resolution on the output and vice-versa.

Figure 1a shows a comparison of stratal slices from the input seismic data volume from western Canada and the equivalent slices at 55 Hz from the SWDFT spectral decomposition method using a time window of 30 ms (figure 1b) and 60 ms (figure 1c). The stratal slices were chosen 24 ms below a marker seismic reflector close to 960 ms on seismic data processed with 5-D interpolation used to regularize offsets and azimuths.

The shape of time window also is important. Careful tapering (rounding the edges) avoids artifacts called the Gibbs phenomenon. The “smoothest” taper would be to use a truncated Gaussian window; this particular implementation of the SWDFT is named the Gabor transform, after its originator.

A common pitfall for the SWDFT is to use an analysis window that is smaller than the period of interest, such that Gibbs artifacts dominate the result. A fixed window will include more cycles of a higher frequency than of a lower frequency sinusoid, suggesting that one could design the window length to be proportional to the period.

This construct gives rise to the continuous wavelet transform (CWT).

In figure 1d we show a 55 Hz spectral magnitude display, using CWT equivalent to the previous stratal slices – and notice the superior definition of the channel morphology. If in turn, the window is a Gaussian whose standard deviation is the period being analyzed, we obtain (omitting a few key mathematical details) the S-transform. This choice avoids picking a window that is too small.

One can implement these transforms in two ways:

  • By simply cross correlating the seismic trace with a suite of complex band-limited wavelets.
  • By applying a suite of band pass filters to the data and then computing the square root of the energy under a sliding window.

In general, the S-transform yields better temporal resolution than the SWDWT, especially at higher frequencies (figure 1e).

By construction, the CWT and S-transforms produce lower temporal resolution at lower frequencies. The continuous wavelet packet-like transform (CWPT) method overcomes this limitation by dividing the window into sub-windows but keeping the same central frequency. This makes it somewhat flexible and in the process displays higher resolution.

This can be seen in figure 1f, where it resolves the channel morphology better than the SWDFT and the CWT displays in figures 1b, 1c and 1d.

In the CWT spectral decomposition method when the spectral magnitude display is sought at a given frequency – at, say, 55 Hz – it usually produces the averaged spectral amplitude response from the neighboring frequencies 50 Hz to 60 Hz. Time frequency continuous wavelet transform (TFCWT) spectral decomposition method overcomes this averaging by producing the desired spectral magnitude at the desired central frequency within the given time window.

In doing so, it results in producing a higher time-frequency resolution than the SWDFT or the CWT methods – notice this on the display in figure 1g. It is computationally intensive, and so takes longer to run.

The wide choice of algorithms can be quite confusing. As is often the case, no algorithm is always best.

If the objective is to measure the number of geologic cycles per unit time, we suggest stratal (i.e. proportional) slicing the seismic data between two picked horizons, and then applying the SWDFT with a window equal to the number of slices. In this case the cyclicity would be a geologic cyclicity, say of progradation and retrogradation along a shelf margin vs. a much quieter and lower “frequency” basinal area.

The algorithm that shows the most “geology” is not necessarily the best. Longer window algorithms like the SWDFT will often cause more vertical mixing of stratigraphy, providing images with “more channels” than a shorter window S transform.

While these channels exist in the data, they may be more properly associated with shallower or deeper horizons than the one being examined.


Different spectral decomposition methods provide an effective way of examining the seismic response of stratigraphic geologic features in terms of spectral components and so help in the interpretation. Each of the methods described above have their own advantages and limitations.

The user is expected to understand these characteristics of the methods before making their application.

We hope this article helps provide some insight into this aspect.

Comments (1)

TIP: Zoom in for a closer look
Did you know you can zoom into the graphic on this page? Some graphics merit a closer look and this is one of them. Use your mouse t zoom in for tha... Read more
3/1/2014 2:03 AM
Janet Brister

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner - Kurt Marfurt
AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: Book

Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Oil Sands, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
Desktop /Portals/0/PackFlashItemImages/WebReady/book-m93-hero-shale-techonics-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 7810 Book

See Also: Bulletin Article

Although the linkages among surface sediments, geomorphic forms, and hydrodynamics in Holocene ooid tidal sand shoals have been evaluated recently, how these factors are reflected in the geomorphic evolution and stratigraphic record of shoals is less constrained. Yet, such understanding is essential to developing meaningful predictive conceptual models of three-dimensional architecture of ancient reservoir analogs. Integrating remote-sensing imagery, high-frequency seismic data, and core characterization from Lily Bank, a modern tidally dominated Bahamian ooid shoal in which sedimentologic processes are well documented, reveals the stratigraphic record of geomorphic change. An irregular, gently dipping rocky surface (interpreted as the top Pleistocene) with no pronounced topographic high underlies the Holocene oolitic succession. A 6-m (20-ft)–thick poorly sorted, gravelly muddy sand with few ooids overlies this basal surface. This lower interval is overlain by sand with an upward increase in proportion of ooids, sorting, and grain size. The uppermost unit, present only under active bar forms, is well-sorted oolitic medium sand with accretionary foresets. Sediments vary stratigraphically and geomorphically; the lower unit is finer and less well sorted than the upper units, and in the oolitic upper unit, sediment size and sorting on bar crests are distinct from bar flanks. Collectively, these results suggest that a marked antecedent bump is not necessary for occurrence of ooid shoals and that the stratigraphic record of analogous ooid shoal systems may preserve clues of geomorphic position, as well as geobody size and orientation.
Desktop /Portals/0/PackFlashItemImages/WebReady/Relations-between-geomorphic-form-and.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3563 Bulletin Article

Size fractions (<4 and 0.4–1.0 μ) of Brent Group sandstones from the northern North Sea contain mostly illite-smectite mixed layers with kaolinite, whereas the same size fractions of Fulmar Formation sandstones from the south-central North Sea consist of illite-smectite mixed layers with minor chlorite. Transmission electron microscope observations show elongated illite laths or agglomerates consisting of small laths when larger individual laths are lacking.

The K-Ar data of the fractions less than 0.4 μm of Brent Group samples plot on two arrays in a 40Ar/36Ar vs. 40K/36Ar diagram that have isochron characteristics with ages of 76.5 ± 4.2 and 40.0 ± 1.5 Ma, and initial 40Ar/36Ar ratios of 253 ± 16 and 301 ± 18, respectively. For the Fulmar Formation samples, the data points of the fractions less than 0.2 and less than 0.4 μ also fit two isochrons with ages of 76.6 ± 1.4 and 47.9 ± 0.5 Ma and initial 40Ar/36Ar ratios of 359 ± 52 and 304 ± 2, respectively. Some of the coarser 0.4–1.0-μ fractions also plot on the two isochrons, but most plot above indicating the presence of detrital components more than 0.4 μ. The almost identical ages obtained from illite-type crystals of sandstones with different deposition ages that are located about 600 km (373 mi) apart record two simultaneous illitization episodes. These events were not induced by local burial conditions, but are related to episodic pressure and/or temperature increases in the studied reservoirs, probably induced by hydrocarbon injection. This interpretation is indirectly supported by notably different K-Ar illite ages from cores of a nearby reservoir at hydrostatic pressure.

Illite is not as well crystallized as expected for potential crystallization temperatures above 160°C measured by fluid-inclusion determinations. In both the northern and south-central North Sea, the two illite generations remain unaffected after crystallization despite continued burial, suggesting notably higher crystallization temperatures than those estimated from geothermal gradients. No recent illite crystallization or alteration is recorded in the K-Ar ages, despite a dramatic regional acceleration of the subsidence in the southern North Sea. ±

Desktop /Portals/0/PackFlashItemImages/WebReady/episodic-and-simultanneous-illitization-in-oil.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 5724 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4484 CD-DVD

See Also: Learn! Blog

Learn the latest technologies being successfully applied in the main unconventional plays, and how the knowledge can be applied to other plays world wide.

Desktop /Portals/0/PackFlashItemImages/WebReady/sc-unconventionals-update.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12178 Learn! Blog