Seismic Aids Heterogeneity Hunt

Contributors: Satinder Chopra, Yong Xu

Canada’s Athabasca oil sands represent the biggest petroleum accumulation in the world and presently produce more than one million barrels of oil per day. These are the Lower Cretaceous bitumen sand reservoirs comprising the McMurray Formation that varies in thickness from 10 to 90 meters and occurs at depth of 0 to 400 meters.

While the shallow oil sands are exploited by open-pit mining, the deeper reservoirs are produced through some type of insitu bitumen production like SAGD (Steam-Assisted Gravity Drainage). SAGD operations require extensive, bitumen-saturated, homogeneous formations for optimum production.

The McMurray formation, however, is heterogeneous in terms of reservoir continuity, mineralogy, sedimentary facies and water-saturation, and is too complex to be understood from the sparse available core database.

Surface seismic data are one option for characterizing this reservoir heterogeneity, with a common approach being to use neural networks or statistical analysis at well locations to deduce relationships between seismic attributes and lithology. These relationships are then used to determine lateral lithology variations between wells.


We describe here a two-step approach to understand the heterogeneity of Athabasca oil-sand reservoirs.

  • The first step involves a rock physics study to understand relationships between lithology and petrophysical parameters. From this effort, lithology-sensitive rock parameters are selected that can be detected seismically.
  • The second step is to derive these lithology parameters from seismic data.

The first step – rock physics analysis – is carried out for various rock physics parameters across the zone of interest. Parameters that exhibit the best sensitivity to lithology are selected. For example, on figure 1 (below) we show P-impedance, Vp/Vs velocity ratio and density cross-plotted against gamma ray using log samples from the study area.

For these study wells, P-impedance shows a limited ability to distinguish lithology; Vp/Vs ratio shows a gentle variation with lithology; and density appears to be the best indicator of clay content.

Now that the desired rock parameter – density – has been determined, step two is to do AVO analyses of prestack seismic data to estimate rock density along seismic profiles.

Normally, density determination is done using a three-term AVO analysis that requires prestack seismic data with long offsets. In our study we improved this conventional approach by adopting innovative ideas like using a windowed approach instead of a sample-by-sample computation for deriving AVO attributes, reducing distortion due to NMO stretch and offset-dependent tuning, using error-based weights and accounting for the strong reflections from the McMurray Devonian interface.

On figure 2 we show a density section derived from seismic data. The lateral variation in seismic-based density shows the richest sand areas (in green color) within the mid-McMurray are around wells 5 and 6, with good shaley cap rocks in the upper-McMurray.

These predictions are verified by gamma ray logs acquired in both wells.

Recently drilled wells 3 and 7 served as blind well tests. Well 3 found mainly a shaley facies within the McMurray, and the seismic inversion for density agrees with these log calibration data. Well 7 was drilled at the edge of the richest sand zone, and its reservoir also matches the seismic-based density results.

In addition, the sandy cap rock within the upper-McMurray in well 7 is predicted by the seismic inversion.


This study demonstrates the application of rock physics analysis and the determination of rock density from seismic data can be used to characterize heterogeneity with the McMurray formation portion of the Athabasca oil sands. While other rock physics parameters can be used, density seems to be a good indicator of lithology at this study site.

This same methodology can be applied to other areas where the objective is to determine heterogeneity within any formation of interest.

Comments (0)

 

Geophysical Corner - Rongfeng Zhang

Rongfeng Zhang is a senior geoscientist with Geomodeling Technology Corp.

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Arthur Barnes, an AAPG member, is with Landmark Graphics Corp., Highlands Ranch, Colo. He can be contacted at Landmark .

Geophysical Corner - Alistair Brown

Alistair Brown, a consultant from Allen, Texas, is a former editor of the EXPLORER’s Geophysical Corner and in 2009 received an AAPG Distinguished Service award.

Yong Xu are with Arcis Corp., Calgary, Canada

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4388 Book

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4516 CD-DVD

See Also: DL Abstract

Offshore Angola has to date delivered recoverable reserves in excess of 20 billion barrels of oil equivalent. This has been encountered in two distinct play systems: the Upper Cretaceous Pinda carbonates sourced by Lower Creatceous lacustrine mudstones and Tertiary deepwater slope turbidite sands sourced by underlying Upper Cretaceous marine mudstones. An extension of the Girassol play into Block 18 to the south will be used to describe how high quality 3D seismic data coupled with a detailed analysis of rock properties led to an unprecedented 6 successes out of 6 wells in the block, including the giant Plutonio discovery. Industry is turning once more to the carbonate play potential - this time in deepwater. It would seem that the Angola offshore success story is set to continue for some time to come.

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 839 DL Abstract

See Also: Online e Symposium

The presenters will discuss effective management of wind farm operations and the challenges often encountered. 

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-wind-farm-operations.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 450 Online e-Symposium

See Also: Online Traditional Course

Learn to critically evaluate current issues that can impact growth and sustainability of oil and gas ventures.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-toc-strategic-decision-making.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3160 Online Traditional Course