Up-Down: Matching VSP, 3-D movements is the key

Welding Geology to Seismic Images

Vertical seismic profiling (VSP) is a measurement procedure in which a seismic sensor is lowered to a sequence of selected depths in a well by wireline, and at each of the downhole receiver stations that sensor then records the downgoing and upgoing seismic wavefields produced by a surface-positioned source (figure 1).

An important concept to understand regarding VSP imaging is that VSP recording geometry causes the stratigraphy at a VSP well – where sequence boundaries are known as a function of depth from well logs and core control – to be welded to the VSP image, which is known as a function of VSP reflection time.

This welded relationship between stratigraphy and a VSP image results because VSP receivers are distributed vertically through geologic image space, allowing both stratigraphic depth and seismic travel time to be known at each downhole receiver station.

This dual-coordinate domain (depth and time) involved in a VSP measurement means that any geologic property known as a function of depth at a VSP well can be accurately positioned on, and rigidly welded to, the time coordinate of the VSP image (figure 1).

The reverse situation also is true; the VSP image can be accurately positioned on, and welded to, the depth coordinate of the stratigraphic column at a VSP well.

This latter option of transforming a VSP image to the stratigraphic depth domain is not done as often, because the usual objective of prospect interpretation is to insert stratigraphy into 3-D seismic data volumes that are defined as functions of seismic image time, not as functions of stratigraphic depth.

A VSP image and a 3-D seismic image often have different time datums, because the images were made by different contractors who used:

  • Different depth datums for the time origin.
  • Different replacement velocities to move source stations to this depth datum.
  • Different illuminating wavelets.

As a result, an interpreter often has to shift a VSP image up or down relative to a 3-D seismic image to determine an optimal match between the two images.

The concept of a welded bond between a VSP image and the stratigraphy at a VSP well means that whenever an interpreter moves a VSP image up, say by 20 ms, to better correlate with a 3-D seismic image, the stratigraphy moves up by the same amount (20 ms) in 3-D seismic image space.

Likewise, if the VSP image has to be moved down to create an optimal waveform character match with the 3-D data, then the straigraphy shifts down by the same amount in the 3-D seismic volume.

The fact that VSP data provide an independent image that can be moved up and down to find an optimal match between VSP and 3-D seismic reflection character is the fundamental property of the VSP-to-seismic calibration technique that establishes the correct time shift between 3-D seismic image time and VSP image time.

When the time shift between the 3-D seismic and VSP images is determined, then the correct time shift between the 3-D seismic image and the stratigraphy at the VSP calibration well is also defined, because that stratigraphy is welded to the VSP image and moves up and down in concert with the VSP image-time axis.

An example of a VSP-based stratigraphic calibration of a 3-D data volume is shown as figure 2. This VSP image is the same one displayed in figure 1 and was produced from a large-offset VSP survey where the source was positioned 600 meters (2,000 feet) from the receiver well.

The fact that stratigraphy is welded to the VSP image, causing stratigraphic interfaces to move up and down in concert with the VSP image during the VSP-to-seismic image calibration process, is what ensures that targeted thin-bed units are positioned in the correct time windows in the 3-D seismic volume when an optimal alignment is established between the VSP and 3-D images.

In figure 2, this VSP-based interpretation procedure leads to the conclusion that although the tops of thin-bed units 19C and 15 are positioned at VSP image times of 1.432 s and 1.333 s, respectively, they have to be inserted into the 3-D data volume 18 ms earlier in image time at 3-D image times of 1.414 s and 1.315, respectively.

Note that this interpretation procedure leads to the conclusion that:

  • Some thin-bed units correlate with peaks in the 3-D volume.
  • Some thin-beds are associated with troughs.
  • Some thin-beds are positioned on zero-crossings of the 3-D wiggle-trace data.

However, for each thin-bed unit we can be sure that we have defined the proper 3-D seismic data window at the VSP calibration well, where seismic attributes can be calculated to study the distribution of each thin-bed reservoir throughout 3-D image space.

Comments (0)


Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4356 Book

See Also: Bulletin Article

Data derived from core and well-logs are essentially one-dimensional and determining eolian system type and likely dimensions and orientation of architectural elements present in subsurface eolian reservoir successions is typically not possible from direct observation alone. This is problematic because accurate predictions of the three-dimensional distribution of interdune and dune-plinth elements that commonly form relatively low-permeability baffles to flow, of net:gross, and of the likely distribution of elements with common porosity-permeability properties at a variety of scales in eolian reservoirs is crucial for effective reservoir characterization.

Direct measurement of a variety of parameters relating to aspects of the architecture of eolian elements preserved as ancient outcropping successions has enabled the establishment of a series of empirical relationships with which to make first-order predictions of a range of architectural parameters from subsurface successions that are not observable directly in core. In many preserved eolian dune successions, the distribution of primary lithofacies types tends to occur in a predictable manner for different types of dune sets, whereby the pattern of distribution of grain-flow, wind-ripple, and grain-fall strata can be related to set architecture, which itself can be related back to original bedform type.

Detailed characterization of individual eolian dune sets and relationships between neighboring dune and interdune elements has been undertaken through outcrop studies of the Permian Cedar Mesa Sandstone and the Jurassic Navajo Sandstone in southern Utah. The style of transition between lithofacies types seen vertically in preserved sets, and therefore measurable in analogous core intervals, enables predictions to be made regarding the relationship between preserved set thickness, individual grain-flow thickness, original bedform dimensional properties (e.g., wavelength and height), the likely proportion of the original bedform that is preserved to form a set, the angle of climb of the system, and the likely along-crest variability of facies distributions in sets generated by the migration of sinuous-crested bedforms. A series of graphical models depict common facies arrangements in bedsets for a suite of dune types and these demonstrate inherent facies variability.

Desktop /Portals/0/PackFlashItemImages/WebReady/reconstruction-of-three-dimensional-eolian-dune-architecture.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3249 Bulletin Article
We use three-dimensional seismic reflection data and new map-based structural restoration methods to define the displacement history and characteristics of a series of tear faults in the deep-water Niger Delta. Deformation in the deep-water Niger Delta is focused mostly within two fold-and-thrust belts that accommodate downdip shortening produced by updip extension on the continental shelf. This shortening is accommodated by a series of thrust sheets that are locally cut by strike-slip faults. Through seismic mapping and interpretation, we resolve these strike-slip faults to be tear faults that share a common detachment level with the thrust faults. Acting in conjunction, these structures have accommodated a north –south gradient in westward-directed shortening. We apply a map-based restoration technique implemented in Gocad to restore an upper stratigraphic horizon of the late Oligocene and use this analysis to calculate slip profiles along the strike-slip faults. The slip magnitudes and directions change abruptly along the lengths of the tear faults as they interact with numerous thrust sheets. The discontinuous nature of these slip profiles reflects the manner in which they have accommodated differential movement between the footwall and hanging-wall blocks of the thrust sheets. In cases for which the relationship between a strike-slip fault and multiple thrust faults is unclear, the recognition of this type of slip profile may distinguish thin-skinned tear faults from more conventional deep-seated, throughgoing strike-slip faults.
Desktop /Portals/0/PackFlashItemImages/WebReady/Geometry,-kinematics,-and-displacement-characteristics-of.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 7962 Bulletin Article

See Also: DL Abstract

Human kidney stone formation (nephrolithiasis) presently affects 12% of men and 5% of women in the United States, generating an estimated annual healthcare cost of $2.1 billion. A first of its kind analysis is being untaken of the integrated role of human microorganisms (the microbiome) in influencing the dynamics of human disease-related mineral precipitation (biomineralization). Direct comparison and inference is being drawn from geobiological studies of microbe-water-rock interactions in Yellowstone hot-springs, Caribbean coral reefs and Roman aqueducts.

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11398 DL Abstract

See Also: Online e Symposium

Desktop /Portals/0/PackFlashItemImages/WebReady/New-Insights-into-the-Stratigraphic-Framework-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 16283 Online e-Symposium