Bit by Bit: A Good Seismic Strategy

Last month we looked at the concept of utilizing the axial impacts of the rotating teeth of a rotary-cone drill bit as a downhole seismic source, which allows seismic data to be acquired by surfacepositioned sensors as a well is being drilled.

Polydiamond crystalline (PDC) bits are now replacing rotary-cone bits in many drilling programs. PDC bits cut rock by a scraping action – not by an axial chiseling action, as does a rotary-cone bit.

And because of its rock-cutting style, a PDC bit does not generate a seismic wavefield that is adequate for seismic imaging or for other seismic applications, unlike the robust wavefield produced by a rotary-cone bit.


Technologies are now available that acquire seismicwhile- drilling (SWD) data by embedding seismic sensors in the drill string near the drill bit (figure 1). With this technology, vertical seismic profile (VSP) data can be acquired while drilling with any kind of bit, including PDC bits, by using these downhole sensors together with a surface-based seismic source.

At each depth where seismic information needs to be obtained, drilling action must cease for several minutes so that the downhole sensors are in a quiet environment as they record the seismic wavefield produced by the source. The responses of the drill-string sensors are stored in a downhole memory unit included in the drill-string system.

The data are retrieved when bit trips are made and the seismicsensor section is returned to the drill floor.

This downhole seismic sensor technology allows numerous seismic applications to be implemented as a well is being drilled, with examples being:

  • Predicting overpressure intervals ahead of the bit.
  • Imaging below and laterally away from the well bore.
  • Defining the relationship between drilling depth and seismic image time in difficult velocity areas in real drilling time.
  • Guiding the bit to a target identified on a surface-based seismic image.
  • Positioning core barrels at the onset of a seismic reflection interval of interest.

Numerous other applications are possible, and several encouraging proof-of-concept tests have been done.


An example of the data quality that can be achieved with drillstring seismic sensors is illustrated on figure 2. Conventional VSP data acquired in the same well with wirelinedeployed sensors also are shown to aid in evaluating the quality of the SWD data.

VSP data almost always are recorded at regularly spaced depth intervals, as they are in this data display. However, as in this example, SWD data may be recorded at irregularly spaced stations positioned at depth coordinates where well conditions allow drilling to be stopped so a quiet seismic condition can be produced in the borehole.

The reflections noted in these particular SWD data are of sufficient quality for the data to be used in seismic imaging applications.

An example of an image produced from drill-string seismic sensors is displayed as figure 3.

These data were acquired as a deviated well was drilled toward the targeted interval marked by the robust seismic reflection events on the seismic profile. The intent was to ensure that the well penetrated the objective at a structurally high position where there was optimal time thickness of the target interval.

These data are an example of SWD data being used to guide a drill bit to a seismic-defined point of penetration on a target.


Acquiring seismic data while drilling is good strategy in areas where:

  • Precise time-vs.-depth relationships are not known.
  • There is concern about drilling into an over-pressured interval.
  • Where a core needs to be collected starting at the top of a seismic-defined stratigraphic interval.

Contact your well services provider to find out how to implement SWD technology when you are confronted with drilling in any of these challenging situations – plus numerous other applications that have not been illustrated in this short review.

Comments (0)

 

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.

VIEW COLUMN ARCHIVES

Image Gallery

See Also: Bulletin Article

Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present.

This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography.

The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin.

In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals.

Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.

Desktop /Portals/0/PackFlashItemImages/WebReady/controls-on-the-deposition-and-preservation.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3743 Bulletin Article

See Also: CD DVD

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4511 CD-DVD

See Also: Energy Policy Blog

You probably paid a spectacularly large bill for home heating this winter and are now wondering how much gasoline prices will rise before you start on the family vacation.

Desktop /Portals/0/PackFlashItemImages/WebReady/is-your-smartphone-sabotaging-your-electric-bill-2014-05may-14.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12898 Energy Policy Blog

See Also: Online Traditional Course

Learn to critically evaluate current issues that can impact growth and sustainability of oil and gas ventures.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-toc-strategic-decision-making.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3160 Online Traditional Course

See Also: Workshop

Make plans to attend the AAPG Workshop called, "Geochronology Applied to Petroleum Geology" on November 23-25, 2015 at the University of in Geneva, Switzerland. The workshop provides 2 days of lectures, one half-day with lab tours and a round-table discussion.

Desktop /Portals/0/PackFlashItemImages/WebReady/er-ws-geochronology-applied-hero-geneva.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 22041 Workshop