Effective Ways to Eliminate Side-Lobe Effects

Contributors: Rongfeng Zhang

It is no secret that geologists do not fully trust all the events shown in pretty seismic pictures.

Even deeper concerns may arise when the images are composed from algorithmic manipulation and transformation of seismic signals, such as seismic attributes – especially spectral decomposition.

Last month in this column I reviewed how spectral decomposition is used in seismic interpretation, and pointed out that even though this technique has become a popular interpretation tool in the industry, it does have some issues – including a significant problem called the side-lobe effect.

In spectral decomposition, when there is one event (the main lobe) that corresponds to a particular geological feature – like the top or bottom of a formation – there often are several relatively smaller adjacent events, called side-lobes. These are closely related to the main lobe, but have nothing to do with sub-surface geology.

For example, many of the strong events shown in warm colors in figure 1 are self-related and do not correspond to actual geology. The risk of interpreting spectral decomposition results with strong side-lobe effects without good well control is obvious and sometimes very large.

The side-lobe effect in spectral decomposition results from the use of a mathematical function with closed form expressions – such as a mathematical wavelet, a sine/cosine and a Gaussian function, for example – as the basic elements in the algorithm used to compute results. These basic elements are squeezed and stretched analytically and then convolved with the seismic trace to calculate spectral decomposition at different frequencies.

Unfortunately, these mathematical expression-based elements rarely resemble the actual seismic data. The Morlet wavelet – the basic element used in continuous wavelet transform (CWT) spectral decomposition – probably is the closest among many other functions to resemble a real seismic wavelet, but is still far from matching real data.

Here, we have proposed a new spectral decomposition method that is similar to CWT; however, instead of using a wavelet derived from a mathematical expression, an actual wavelet extracted from the seismic data is used (an example is shown on the top right of figure 1).

Since the real wavelet does not have a simple mathematical expression, we may not be able to transform back from the spectral decomposition. This, however, is regarded as a limited deficiency, since inversion to the original data may not be required in many or most cases.

The direct benefit, comparing to CWT and other methods, is that there are fewer side-lobe effects and therefore less ambiguity. The proposed method uses an algorithm similar to CWT, wherein the seismic data is convolved with groups of dilated, squeezed and stretched seismic wavelets.

If the closed form expression of a wavelet is known, squeezing and stretching can be easily done ­– but doing this with a discrete seismic wavelet is challenging and special care is required.

Figure 2 shows the spectral decomposition results calculated by CWT and the new method at the same frequency (72Hz) on a cross line in Blackfoot (Canada) P-wave seismic data. From shallow to deep, there are roughly three groups of events (corresponding to warm colours) where the reservoir is located in the middle group.

Comparing the results in figure 2, it is clear that the new method displays a clear advantage over the CWT method. Fewer side-lobe effects are observed, especially in the first and the third event groups, where some individual events hardly can be distinguished in the results from CWT.

In the map view, the results (right) from the new method show the north-south incised valley more clearly. There are the upper channel and the lower channel located in the valley, and they are partially sand-filled and partially shale-filled. Due to this, the sand and shale deposits within the channels in this data set cannot be fully distinguished solely by spectral decomposition results.

Some wells penetrate the channels; some do not, and are the regional wells as reference.

The CWT method shows high amplitudes within the channel, which could be misleading.

Spectral decomposition is a powerful interpretation tool, and each method has its advantages and disadvantages. The new method introduced here tries to reduce the side-lobe effects that come with the other methods.

The severity of these effects varies across geologic regimes, data sets and frequencies.

The new method provides a very attractive option when spectral decomposition side-lobe effects appear to be masking key geologic features.

I would like to thank John Sherman for his help in this article. I also would like to thank Geomodeling Technology Corp. for its support. 

(Editor’s note: Rongfeng Zhang is a senior geoscientist with Geomodeling Technology Corp.)

Comments (0)


Geophysical Corner - Rongfeng Zhang

Rongfeng Zhang is a senior geoscientist with Geomodeling Technology Corp.

Geophysical Corner

Geophysical Corner - Satinder Chopra
Satinder Chopra, award-winning chief geophysicist (reservoir), at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 2012.

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: APPEX Global

Whether you are looking to buy, sell or farmout E&P deals, expand into new areas, find new partners, make high quality contacts, or stay on top of what’s happening in the industry, previous delegates will tell you themselves, APPEX is the place to be.
Desktop /Portals/0/PackFlashItemImages/WebReady/appex-2016-global-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 22025 APPEX Global

See Also: Book

Desktop /Portals/0/images/_site/AAPG-newlogo-vertical-morepadding.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4090 Book

See Also: Bulletin Article

Criteria for recognizing stratigraphic sequences are well established on continental margins but more challenging to apply in basinal settings. We report an investigation of the Upper Devonian Woodford Shale, Permian Basin, west Texas based on a set of four long cores, identifying sea level cycles and stratigraphic sequences in an organic-rich shale.

The Woodford Shale is dominated by organic-rich mudstone, sharply overlain by a bioturbated organic-poor mudstone that is consistent with a second-order eustatic sea level fall. Interbedded with the organic-rich mudstone are carbonate beds, chert beds, and radiolarian laminae, all interpreted as sediment gravity-flow deposits. Bundles of interbedded mudstone and carbonate beds alternate with intervals of organic-rich mudstone and thin radiolaria-rich laminae, defining a 5–10 m (16–33 ft)-thick third-order cyclicity. The former are interpreted to represent highstand systems tracts, whereas the latter are interpreted as representing falling stage, lowstand, and transgressive systems tracts. Carbonate beds predominate in the lower Woodford section, associated with highstand shedding at a second-order scale; chert beds predominate in the upper Woodford section, responding to the second-order lowstand.

Additional variability is introduced by geographic position. Wells nearest the western margin of the basin have the greatest concentration of carbonate beds caused by proximity to a carbonate platform. A well near the southern margin has the greatest concentration of chert beds, resulting from shedding of biogenic silica from a southern source. A well in the basin center has little chert and carbonate; here, third-order sea level cycles were primarily reflected in the stratigraphic distribution of radiolarian-rich laminae.

Desktop /Portals/0/PackFlashItemImages/WebReady/a-sequence-stratigraphic-framework-for-the-Upper-Devonian-Woodford-Shale.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 3250 Bulletin Article

See Also: Energy Policy Blog

The Organization of Petroleum Exporting Countries (OPEC, including Saudi Arabia, UAE, Venezuela, Algeria,  Indonesia, Iraq, Iran, Kuwait, Libya, Nigeria and Qatar) seems less of a menace now that the United States oil and natural gas production is booming. But OPEC continues to be a major exporter that can influence global oil supply and prices. However, OPEC countries are very dependent on export revenues to provide the jobs and services demanded by their populations, so a major shift in production volumes and prices is unlikely.

Desktop /Portals/0/PackFlashItemImages/WebReady/remember-opec-2014-05may-07.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 12897 Energy Policy Blog

See Also: Online e Symposium

Cross disciplinary workflows play an important part of successful characterization of shale reservoirs. This course discusses how the artificial kerogen maturity of organic-rich Green River shale affects the petrophysical, micro-structural, geochemical and elastic properties.

Desktop /Portals/0/PackFlashItemImages/WebReady/sc-kerogen-maturity-determinations.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11390 Online e-Symposium