Shining Light on a Shady Situation

Contributors: Arthur Barnes

Seismic reflection data come alive when displayed with shaded relief.

With shaded relief, time slices look like illuminated topography, and vertical sections look like rugged canyon walls; faults, domes, anticlines, synclines, channels and even gas clouds stand out boldly.

Shaded relief displays are ubiquitous in geology and geophysics. Elevations, bathymetry, gravity, magnetic and other kinds of map data are routinely displayed with shaded relief to make maps that look like photographs of apparent topography.

Such maps are powerful aids to geologic intuition because apparent topography often suggests true underlying geology.

Though contour maps offer the same information, shaded relief maps present the information in a way that is more natural – and so more readily comprehensible.

Adding shaded relief to 3-D seismic data is similar to adding shaded relief to maps, with the difference that shading is applied to all reflection surfaces in the seismic volume, not to a single horizon. Thus seismic shaded relief is inherently 3-D, so that both time slices and vertical sections appear illuminated.

The process of adding shaded relief to seismic data is simple: create a shaded relief seismic attribute and blend it with the seismic data (figure 1). A shaded relief seismic attribute quantifies the amount of light that seismic surfaces reflect when illuminated by a distant light source (figure 2).

This quantity – the shading – is a function of the angle of incidence of the illumination, which depends on reflection orientation and the position of the sun. Shading can be controlled by exaggerating reflection slopes to enhance contrasts, or by adjusting surfaces to appear dull like shale, shiny-like water or moderately shiny-like quartz sand.

Because shaded relief depends on the sun position, it acts as a directional filter. Features that trend perpendicular to the illumination direction are highlighted, while features that trend parallel are hidden.

To capture all trends, it is necessary to create two shaded relief attribute volumes using orthogonal illumination directions.

Blending seismic data with shaded relief complements blending data with a discontinuity attribute because shaded relief reveals different structural features than continuity, principally anticlines, synclines and domes (figure 3).

Like discontinuity, shaded relief also reveals faults and channels (figure 4), with the advantage that it can indicate the direction of throw on a fault and show the internal geometry of the channel.

A shaded relief seismic attribute can have arbitrary resolution, but it tends to provide better results when it is fairly smooth and clean (as in the data examples presented here). Smoothed shaded relief highlights large features and trends that might otherwise be obscured by details in the data; it lets one see the forest for the trees. In this way shaded relief can serve as a useful tool for rapid reconnaissance of structure in a seismic volume.

Of course, smoothing reduces the resolution of the shaded relief so that small features, such as narrow channels and minor faults, will not be seen. These features are often best imaged by discontinuity and curvature attributes.

Almost everything we do to prepare seismic data for conventional interpretation is designed to make images that look as much like geology – and as little like seismic waves – as we can. Seismic shaded relief is another small step in this direction.

Can shaded relief aid our understanding of seismic data as much as it aids our understanding of geologic maps?

Only time will tell.

Comments (0)


Geophysical Corner - Rongfeng Zhang

Rongfeng Zhang is a senior geoscientist with Geomodeling Technology Corp.

Arthur Barnes, an AAPG member, is with Landmark Graphics Corp., Highlands Ranch, Colo. He can be contacted at Landmark .

Geophysical Corner

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case studies, techniques and application to the petroleum industry.


Image Gallery

See Also: Book

Desktop /Portals/0/PackFlashItemImages/WebReady/book-m99-The-Salt-Mine-A-Digital-Atlas-of-Salt-Tectonics.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 4058 Book
Alternative Resources, Structure, Geochemistry and Basin Modeling, Sedimentology and Stratigraphy, Geophysics, Business and Economics, Engineering, Petrophysics and Well Logs, Environmental, Geomechanics and Fracture Analysis, Compressional Systems, Salt Tectonics, Tectonics (General), Extensional Systems, Fold and Thrust Belts, Structural Analysis (Other), Basin Modeling, Source Rock, Migration, Petroleum Systems, Thermal History, Oil Seeps, Oil and Gas Analysis, Maturation, Sequence Stratigraphy, Clastics, Carbonates, Evaporites, Seismic, Gravity, Magnetic, Direct Hydrocarbon Indicators, Resource Estimates, Reserve Estimation, Risk Analysis, Economics, Reservoir Characterization, Development and Operations, Production, Structural Traps, Oil Sands, Oil Shale, Shale Gas, Coalbed Methane, Deep Basin Gas, Diagenetic Traps, Fractured Carbonate Reservoirs, Stratigraphic Traps, Subsalt Traps, Tight Gas Sands, Gas Hydrates, Coal, Uranium (Nuclear), Geothermal, Renewable Energy, Eolian Sandstones, Sheet Sand Deposits, Estuarine Deposits, Fluvial Deltaic Systems, Deep Sea / Deepwater, Lacustrine Deposits, Marine, Regressive Deposits, Transgressive Deposits, Shelf Sand Deposits, Slope, High Stand Deposits, Incised Valley Deposits, Low Stand Deposits, Conventional Sandstones, Deepwater Turbidites, Dolostones, Carbonate Reefs, (Carbonate) Shelf Sand Deposits, Carbonate Platforms, Sebkha, Lacustrine Deposits, Salt, Conventional Drilling, Directional Drilling, Infill Drilling, Coring, Hydraulic Fracturing, Primary Recovery, Secondary Recovery, Water Flooding, Gas Injection, Tertiary Recovery, Chemical Flooding Processes, Thermal Recovery Processes, Miscible Recovery, Microbial Recovery, Drive Mechanisms, Depletion Drive, Water Drive, Ground Water, Hydrology, Reclamation, Remediation, Remote Sensing, Water Resources, Monitoring, Pollution, Natural Resources, Wind Energy, Solar Energy, Hydroelectric Energy, Bioenergy, Hydrogen Energy
Desktop /Portals/0/PackFlashItemImages/WebReady/book-s56-atlas-deep-water-outcrops-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 7811 Book

See Also: Learn! Blog

Participants will examine illustrative outcrops of thrusts, fault-related folds, stratal architectures and facies of depositional systems affected by growing structures, which are good analogues for hydrocarbon reservoirs. Objectives include interpreting complex thrust structures, identifying and understanding strain and fracture systems in fold-thrust belts, and analyzing patterns of growth strata in areas with synsedimentary folding.

Desktop /Portals/0/PackFlashItemImages/WebReady/fs-Folding-Thrusting-and-Syntectonic-Sedimentation-Perspectives-from-Classic-Localities-Central-Pyrenees.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 11057 Learn! Blog

See Also: Online e Symposium

Expanded package for CEU credit is $100 for AAPG members, and $145 for non-members. Special Student Pricing: $25 for Webinar only; $35 for Expanded package.

Desktop /Portals/0/PackFlashItemImages/WebReady/oc-es-application-of-thermal-maturation.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 1445 Online e-Symposium

See Also: Short Course

This course is designed to teach graduate students the principles, concepts and methods of sequence stratigraphy. Sequence stratigraphy is an informal chronostratigraphic methodology that uses stratal surfaces to subdivide the stratigraphic record. This methodology allows the identification of coeval facies, documents the time-transgressive nature of classic lithostratigraphic units and provides geoscientists with an additional way to analyze and subdivide the stratigraphic record.

Desktop /Portals/0/PackFlashItemImages/WebReady/ace2015-sc08-graduate-students-hero.jpg?width=50&h=50&mode=crop&anchor=middlecenter&quality=90amp;encoder=freeimage&progressive=true 14573 Short Course